
ORF 363/COS 323 Problem set 4 Fall 2023, Princeton University
Instructor: A.A. Ahmadi
TAs: Beneventano, Chaudhry, Hua, Li, Lok
Due on Thursday, October 26, 2023, at 1:30pm EST, on Gradescope

For all problems that involve coding, please include your code. Our instructions are given
with MATLAB in mind (recommended language), but you are free to use a different language.

Problem 1: Support Vector Machines (SVMs)
Recall our Support Vector Machines application of convex optimization from lecture. We
have m feature vectors x1, . . . , xm ∈ Rn with each xi having a label yi ∈ {−1, 1}. The goal
is to find a linear classifier, that is a hyperplane aTx− b, where a ∈ Rn and b ∈ R, by solving
the optimization problem

min
a,b

∥a∥

s.t. yi(a
Txi − b) ≥ 1, ∀i = 1, . . . ,m.

(1)

We will then use this classifier to classify new data points.

1. Uniqueness of the optimal solution.

(a) Is the objective function ∥a∥ convex? Strictly convex?
(b) What about ∥a∥2? Is it convex? Strictly convex?
(c) Prove that the solution to (1) is unique.

2. We would like to show that the optimization problem (1) is equivalent to

max
a,b,t

t

s.t. yi(a
Txi − b) ≥ t, ∀i = 1, . . . ,m

∥a∥ ≤ 1,

(2)

which is easier to interpret in terms of finding a classifier with maximum margin.
Show that if (1) is feasible (with a positive optimal value), then (2) is feasible (and
has a positive optimal value). Conversely, show that if (2) is feasible (with a positive
optimal value), then (1) is feasible (and has a positive optimal value). You can assume
that there is at least one data point with yi = 1 and one with yi = −1 as otherwise
there is nothing to classify.

3. Assume the optimal value of (2) is positive. Show that an optimal solution of (2)
always satisfies ∥a∥ = 1.

1

Problem 2: SVMs with linearly separable data
Open the Matlab file HWSVM.mat. To do this, download the file into your working directory
and open it by calling "load HWSVM" in Matlab. This will load 6 vectors into MATLAB.
You will need three of these vectors ("x1part2", "x2part2" and "ypart2") for this part
of the problem. These three vectors correspond to m = 53 points in R2 whose components
(x1, x2)i,i=1,...,m are given in the first two vectors and whose labels yi are given in the vector
ypart2. For Python users, you can use the following code to load the data file.

1 import s c i p y
2 mat = s c i p y . i o . loadmat (‘HWSVM. mat ’)
3 x1 = mat [‘ x1part2 ’]
4 x2 = mat [‘ x2part2 ’]
5 y = mat [‘ ypart2 ’]

1. Plot all the 53 points on a graph. We need to be able to tell the difference between
points that are labelled 1 and points that are labelled −1.

2. Solve optimization problem (1) and plot on the same graph the optimal linear classifier
(hyperplane) and the two shifted hyperplanes corresponding to the boundaries of the
margin. Give the equations of these three lines.

3. Which points are the support vectors? Give their coordinates.

Problem 3: SVMs with data that is not linearly separable
You will now need the data vectors "x1part3", "x2part3" and "ypart3" from "HWSVM.mat".
These three vectors correspond to m = 100 points (x1, x2)i,i=1,...,m in R2 and an associated
vector y which has the label of each point.

1. Let S be a set consisting of s points z1, . . . , zs in Rk. The convex hull of S is defined
as

conv(S) =
{

s∑
i=1

λizi | zi ∈ S, λi ≥ 0, and
s∑

i=1

λi = 1

}
.

In words, this is the set of points that can be written as a convex combination of the
points in S. A geometric interpretation of this definition is given in Figure 1.

Define
A = {(x1, x2)i,i=1,...,m|yi = 1}

2

(a) A set of points S (b) Convex hull of S

Figure 1: Convex hull of a set

and
B = {(x1, x2)i,i=1,...,m|yi = −1}.

We say that the sets A and B are linearly separable if there exists a hyperplane aTx−b

that takes value ≥ 1 on A and ≤ −1 on B. Prove that if A and B are linearly separable,
then their convex hulls do not intersect.

2. For the numerical data given, find a point that is both in conv(A) and conv(B) using
CVX. Plot this point on the graph and give its coordinates.
Hint: Write the problem as a convex optimization problem.

3. Recall the following convex optimization problem from lecture that attempts to simul-
taneously minimize the number of misclassified points and maximize the length of the
margin:

min
a,b,η

∥a∥+ γ∥η∥1

s.t. yi(a
Txi − b) ≥ 1− ηi, ∀i = 1, . . . ,m

ηi ≥ 0, ∀i = 1, . . . ,m.

(3)

Solve this problem for γ = 1, 2, . . . , 10 and generate two plots: The first one will give
the length of the margin (counting both sides) as a function of γ; the second one will
give the number of misclassified points as a function of γ. Discuss the overall trends
of the two plots; are they what you were expecting?

3

Problem 4: Hillary or Bernie?
You would like to use the knowledge you’ve acquired in optimization over the past few weeks
to see if you could have predicted the outcome of each Hillary-Bernie race in the Democratic
primaries. To make things easier, you consider only the counties in the tri-state area and
New England, i.e., those that belong to the states of New York, New Jersey, Maine, New
Hampshire, Pennsylvania, Vermont, Massachussetts, Connecticut, or Rhode Island.
Your goal is to find a linear classifier that, for each county, labels it either as a Bernie win
or as a Hillary win. To do this, you have access to a feature vector comprising the following
features: mean income, percentage of hispanics, percentage of whites, percentage of residents
with a Bachelor’s degree or higher, and population density.

1. Load the data file Hillary_vs_Bernie in MATLAB/Python. This file includes 4
parts: features_train, features_test, labels_train and labels_test.

In features_train, we have given you the feature vectors for 175 counties and in
label_train, their corresponding labels (-1 is a Bernie win and 1 is a Hillary win).
As there was a wide disparity in the orders of magnitude of the original data (average
income is around 104 whereas the percentages are between 0 and 1), each feature
vector has already been normalized by its standard deviation. The original data can be
found at https://www.kaggle.com/benhamner/2016-us-election (as fact checking
is popular at the moment :)). Solve problem (3) to build a linear classifier for this
training set for γ = 0.1, 1, 10. For each value of γ, specify the optimal a∗, b∗ obtained.

2. Test the performance of your classifier using the feature vectors from 21 other coun-
ties (given in features_test) by comparing the labels obtained to the ones given in
label_test. Which γ gives you the highest success rate in terms of prediction? Take
a look at the entries of a∗ in this case – what does this suggest about the people who
vote for Hillary compared to those who vote for Bernie?

4

https://www.kaggle.com/benhamner/2016-us-election

Problem 5: Newton fractals
The sensitivity of Newton’s method to initial conditions is beautifully demonstrated using
plots over the complex plane known as Newton fractals. You may have seen a picture
of Newton fractals in lecture notes, and now your task in this problem is to produce the
Newton fractal associated with the critical points of f(z) = z5 − 5z. The steps below are
only meant to help you do this — there is no grade assigned to them.

1. Note that z is a complex number throughout this exercise. Verify that the critical
points of f , i.e., the roots of f ′ are z1 = 1, z2 = −1, z3 = i, z4 = −i.

2. Discretize [−1, 1] × [−1, 1] using intervals of length 0.0031. We recommend that you
define the sequence of points x = −1 : 0.0031 : 0.999, and y = −0.999 : 0.0031 : 1

to avoid certain numerical issues. For each point (xj, yl) in your discrete grid, apply
Newton’s method with zjl = xj + iyl as its initial point.
Hint: Consider using the meshgrid function to create your grid (which will contain
6452 points on the complex plane). To run the Newton method, we recommend using
matrix operations in MATLAB instead of for-loops. Finally, you may set the maximum
number of iterations for Newton’s method to 200 for simplicity.

3. Map each of the critical points of f to some color code; e.g., z1 ↔ 1, z2 ↔ 2, z3 ↔
3, z4 ↔ 4. Then, to each initial condition (i.e., to each (xj, yl) on the grid) assign
one of the four color codes based on the root that the iterations are converging to (up
to some tolerance error, say, ϵ = 0.01). Depending on how you discretize, for some
initial conditions the algorithm may not converge. In that case, assign color code 0 to
that particular (xj, yl). You will obtain a 645×645 matrix of color codes representing
your Newton fractal. Plot it using the imagesc function in MATLAB or the imshow
function in Python (matplotlib).

Submit a print out of your code and plot. To get credit, your code must produce the plot.

5

