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Conjugate direction methods•
This lecture:

Instructor: 
Amir Ali Ahmadi

In the last couple of lectures we have seen several types of gradient 
descent methods as well as the Newton's method. Today we see yet 
another class of descent methods that are particularly clever and 
efficient: the conjugate direction methods.

•

These methods are primarily developed for minimizing quadratic 
functions. A classic reference is due to Hestenes and Stiefel [HS52], but 
some of the ideas date back further.

•

They minimize a quadratic function in  variables in   steps (in 
absence of roundoff errors).

○

Evaluation and storage of the Hessian matrix is not required.○

Unlike Newton, we do not need to invert a matrix (or solve a linear 
system) as a sub-problem.

○

Conjugate direction methods are in some sense intermediate between 
gradient descent and Newton. They try to accelerate the convergence rate 
of steepest descent without paying the overhead of Newton's method. 
They have some very attractive properties:

•

Conjugate direction methods are also used in practice for solving large-
scale linear systems; in particular those defined by a positive definite 
matrix.

•

            

Like our other descent methods, conjugate direction methods take the 
following iterative form:

•

The direction   is chosen using the notion of conjugate directions which 
is fundamental to everything that follows. So let us start with defining 
that formally.

•

Our presentation in this lecture is mostly based on [CZ13] but also adapts 
ideas from [Ber03], [Boy13], [HS52], [Kel09], [Lay03], [She94].

•
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Definition. Let  be an    real symmetric matrix. We say that a set of non-
zero vectors           are  -conjugate if 
                   
                                                    

                 

In this lecture we are mostly concerned with minimizing a quadratic function
                                                      

                                                                  
 

 
         

 where     

If  is the identity matrix, this simply means that the vectos   are 
pairwise orthogonal.

•

For general    [She94] gives a nice intution of what  -conjugacy means. 
Figure (a) below shows the level sets of a quadratic function     and a 
number of  -conjugate pairs of vectors. "Imagine if this page was printed 
on bubble gum, and you grabbed Figure (a) by the ends and stretched in 
until the ellipse appear circular. Then vectors would appear orthogonal, 
as in Figure (b)."

•

The pairs on the left are  -conjugate because the pairs on the right are 
orthogonal.

Image: [She94]

Recall that a set of vectors           are linearly independent if for 
any sets of scalars        we have
                        

•
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Lemma 1. Let  be an    symmetric positive definite matrix. If the 
directions                     are  -conjugate, then they are linearly 
independent.

Proof.

Remark. Why in the statement of the lemma we have         
Because we cannot have more than  linearly independent vectors in   (basic 
fact in linear algebra, proven for your convenience below). Hence we cannot 
have more than  vectors that are  -conjugate.
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So what are  -conjugate directions good for? As we will see next, if we have 

 conjugate directions, we can minimize      
 

 
         by doing 

exact line search iteratively along them. This is the conjugate direction 
method. Let's see it more formally.

Input: An    matrix      a vector       a set of   -conjugate directions 
          

The Conjugate Direction Algorithm: Pick an initial point       
For    to     

Let                 •

Let     
  

   

  
    

      •

Let              •

Lemma 2. The step size   given above gives the exact minimum along the 
direction    

And more importantly, 

Theorem 1. For any starting point        the algorithm above converges to 

the unique minimum   of      
 

 
         in  steps; i.e.,       

Proof of Lemma 2.
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Proof of Theorem 1.
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The algorithm we presented assumed a list of  -conjugate directions 
         as input. But how can compute these directions from the matrix  ? 
Here we propose a simple algorithm (and we'll see a more clever approach 
later in the lecture).

The conjugate Gram-Schmidt procedure 

This is a simple procedure that allows us to start with any set 
of  linearly independent vectors            (say, the 
standard basis vectors     ) and turn them into   -conjugate 
vectors          in such a way that             and 
           span the same subspace. In the special case that 
 is the identity matrix, this is the usual Gram-Schmidt 
process for obtaining an orthogonal basis.

Jorgen Gram
(1850-1916)

Erhard Schmidt
(1876-1959)

Theorem 2. Let  be an     positive definite matrix and let            be a 
set of linearly independent vectors. Then, the vectors            constructed 
as follows are  -conjugate (and span the same space as            ) :
      

           
    

    

  
    

          

 

   

            

Proof.
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Proof (Cont'd).

While you can always use the conjugate Gram-Schmidt algorithm to 
generate conjugate directions and then start your conjugate direction 
method, there is a much more efficient way of doing this.

•

This method can generate your conjugate directions on the fly in 
each iteration. 

○

Moreover, The update rule to find new conjugate directions will be 
more efficient that what the Gram-Schmidt process offered, which 
requires a stack of all previous conjugate directions in the memory.

○

This is the conjugate gradient (CG) algorithm that we will see shortly. •

Before we get to the conjugate gradient algorithm, we state an important 
geometric property of any conjugate direction method called the 
"expanding subspace theorem". The proof of this comes up in the proof of 
correctness of the conjugate gradient algorithm.

•

Fall 2015: I skipped these proofs in class, so they are optional.•
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Theorem 3 (the expanding subspace theorem). Let  be an    

symmetric positive definite matrix,      
 

 
                      a set 

of  -conjugate directions,   an arbitrary point in   , and          the 
sequence of points generated by the conjugate direction algorithm. Let
             
                                                                      

Then, for               minimizes  over    

Lemma 3. Let  be an    symmetric positive definite matrix,      
 

 
                      a set of  -conjugate directions,   an arbitrary 

point in   , and          the sequence of points generated by the conjugate 
direction algorithm. Let                 Then, 

                                                                       
      

for all            and         

Image credit: [CZ13]

Note that          So this proves again that the algorithm indeed 
terminates with the optimal solution in   steps.

•
Remark:

The following lemma is the main ingredient of the proof.
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Proof of Lemma 3.

Proof of the expanding subspace theorem.
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The conjugate gradient algorithm

We are now ready to introduce the conjugate gradient algorithm. This is a 
specific type of a conjugate direction algorithm. It does not require the 
conjugate directions a priori but generates them on the fly. The update rule 
for these directions is very simple: In each iteration, the new conjugate 
direction is a linear combination of the current gradient and the previous 
conjugate direction.

Set     select an initial point       1.

          If     , stop; else, set        2.

    
  

   

  
    

       3.

             4.

               If         stop.5.

   
    

    

  
    

         6.

                
 

7.

Set       go to step 3.8.

The algorithm is spelled out below in 8 steps. We follow here the 
presentation of [CZ13]. The update rule for   (step 6) can appear in 
alternate forms ; see, e.g., [Ber03].

•

Note that the first step of the algorithm is exactly the same as what we 
would do in steepest descent.

•
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Theorem 4. The directions        that the conjugate gradient algortihm 
produces (in step 7) are  -conjugate.

Proof. See [CZ13], Proposition 10.1 on p. 184. A main step of the proof is 
Lemma 3.

Note that in view of Theorem 1, Theorem 4 immediately implies that the 
conjugate gradient algorithm minimizes  in  steps.

•

Solving linear systems:     

Solving linear systems is one of the most basic and fundamental tasks in 
computational mathematics. It has been studied for centuries.

•

You have probably seen algorithms  for this in your linear algebra class, 
most likely Gaussian elimination. 

•

Here we show how the conjugate gradient method can be used to solve a 
linear system. This method (or some of its more elaborate variants) are 
often the method of choice for large-scale (sparse) linear systems .

•

This implies that there is a unique solution (why?).○

Suppose we are solving      where  is symmetric and positive 
definite.

•

Newton's method applied to convex functions (we have already seen 
this linear system for finding the Newton direction)

○

Least-squares (so-called normal equations):            ○

Solving for voltages in resistor circuits:     (G is the "conductance 
matrix")

○

Graph Laplacian linear systems○

…○

Examples of problems where positive definite linear systems appear 
[Boy13]:

•

How to solve the system       •

Define the quadratic function      
 

 
           Let CG find its global 

minimum:         

•
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Is the assumption    too restrictive?•

Suppose we want to solve     , where  is invertible but not 
positive definite or even symmetric.

○

Claim:     if and only if          ○

Note that    is symmetric. It is also positive definite if  is 
invertible (why?).

○

So we can solve          using CG instead.○

No (at least not in theory). Indeed, any nondegenerate linear system can 
be reduced to a positive definite one:

•

For example, the condition number of the second linear system is 
the square of that of the first one. (Why? Recall that condition 

number is 
    

    
     ) 

○

Moreover, we don't want to pay the price of matrix multiplication to 
get      The good news is that we don't have to: In the CG algorithm 
only matrix-vector operations are needed and we can do them from 
right to left by two matix-vector multiplications instead of first doing 
the matrix-matrix multiplicaiton.

○

But there is a word of caution: while this simple reduction is 
mathematically valid, it may raise concerns from a numerical point of 
view.

•

Leontief input-output model of an economy

(1973)

Wassily Leontief
(1906-1999)

Agriculture○

Manufacturing ○

Services○

Education○

…○

The Leontief input-output model breaks a 
nation's economy into   sectors (so-called 
producing sectors). For example,

•

Separately, it considers the society as an "open sector" which is a 
consumer of the output of the   sectors.

•

Each of the  sectors also needs the output of (some of) the other 
sectors in order to produce its own output.

•

The model tries to understand the interdependencies among the  
sectors by studying how much each sector should produce to meet 
the demand of the other sectors, as well as the demand of the society.

•
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Leontief input-output model (Cont'd)

Transportation Agriculture Services Manufacturing

Transportation .2 .3 .5 .3

Agriculture .5 .3 .1 .0

Services .1 .2 .2 .5

Manufacturing .1 .1 .1 .1

This is called the consumption matrix, denoted by   •

In order to produce one unit of transportation, the transportation 
industry needs to consume as input .2 units of transportation itself, .5 
units of agriculture, .1 unites of services, and .1 units of 
manufacturing.

○

Other columns interpreted analogously. ○

Here is how you should interpret the first column:•

Input consumed per unit of output

Let  be an    vector denoting the demand of the open sector (i.e., the 
society or the non-producing sector) for each of the   producing sectors.

•

We are interested in solving the following linear system, which is called 
the Leontief production equation:

•

      

Here,   is the amount that sector   needs to produce to meet intermidate 
demand (demand of other producing sectors) and the final demand 
(demand of the open sector).

•

"Amount produced = intermediate demand + final demand"

So for a given  and   we need to solve the following liner system to 
figure out how much each sector should produce:

•

        

A sufficient condition for this is for   to have spectral radius (i.e., largest 
eigenvalue in absolute value) less than one. Can you prove this?  (optional)

○

An economy is called "productive" if for every demand vector   there exists a 
nonnegative production vector  satisfying the above linear system. This is a 
property of the consumption matrix only.

•
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A bit of Leontief history…

Source: [Lay03]

In 1949, Wassily Leontief (then at Harvard) 
used statistics from the U.S. Bureau of 
Labor to divide the U.S. economy in 500 
sectors. For each one he wrote a linear 
equation (as in the previous page) to 
describe how the sector distributed its 
output to other sectors of the economy.

•

He used Harvard University's Mark II, a 
"super computer" of the time, to solve this 
linear system. This was a machine financed 
by the U.S. Navy and built in 1947.

•

Programming Mark II for this task took several months.○

Once it was finally done, the machine took 56 hours to solve  this 
42    linear system!

○

Today, on my tiny laptop, this is done in the order of micro seconds.○

Since the resulting linear system was too big for Mark II, Leontief 
aggregated his data to construct a 42    linear system.

•

Leontief's achievement is considered to be one of the first significant 
uses of computers in mathematical economics.

•

If you had access to the fastest computer of today, what problem would 
you give to it to solve?

•
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Notes:
The relevant [CZ13]chapter for this lecture is Chapter 10.
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