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An application: robust linear programming•

Linear programming duality + robust linear programming

The idea behind duality

For any linear program (LP), there is a closely related LP called the dual. The 
feasible and optimal solutions of the dual provide very useful information 
about the original (aka primal) LP.

•

In particular, if the primal LP is a maximization problem, the dual can be used 
to find upper bounds on its optimal value. (Similarly, if the primal is a 
minimization problem, the dual gives lower bounds.) Note that this is useful in 
certifying optimality of a candidate solution to the primal. One does not get 
information of this type from feasible solutions to the primal alone.

•

Let's understand this concept through an example first.

Consider this LP (from [DPV08]):

      max.       

      s.t.               
                            
                      
               

Somebody comes to you and claims    
  

      
   

  with objective value 1900 is 

optimal.

•

                     

How can we check his claim?  Well, suppose we combine the constraints to 
produce new "valid inequalities" in a way that they upper bound the objective 
function when evaluated on the feasible set. For example,

•

This means that it is impossible for the objective function to take value larger 
than 2000 when evaluated at a feasible point (why?). Can we bring down this 
upper bound further?

•
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Let's systematize what we did in this example. Start by introducing a multiplier for 
each constraint:

                           

                                                                                          

                                                                                  

First, we need            to preserve the inequalities after multiplication.•

After we multiply and add, we obtain a new valid inequality of the form•

                                        

       
        

We need the left hand side (and hence the right hand side) to be an upper 
bound on the objective function         This can be achieved by enforcing

Indeed, this implies our desired upper bound as      for        

Finally, we want to get the best possible upper bound which means that we 
want to minimize                    

•

                      

s.t.        

Altogether, this gives us the following linear programming problem•

                                                
                                                 

This problem is called the dual LP!

The optimal solution to the primal is   
  

  
    

   
   

  with optimal value 1900.

The optimal solution to the dual is  

  

  

  

   
 
 
 
 with optimal value 1900. Bingo! 

They match!

                           
What if we try•

This indeed shows that    
  

 is optimal. The coefficients (0,5,1) are 

called the "dual multipliers".
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More generally, if the primal LP  (P) is of the form

        
s.t.         
                

where       ,      and     , then the dual LP (D) will be of the form

       

         
s.t.         

Weak duality and strong duality

The following are the two fundamental theorems of duality. We only 
prove the weak version.

•

Weak duality: If   is feasible for (P) and  is feasible for (D), then         

Strong duality: If (P) has a finite optimal value, then so does (D) and the two 
optimal values coincide.

Proof of weak duality:

                              
                                                           
                                                               

The Primal/Dual pair can appear in many other forms, e.g., in standard 
form. Duality theorems hold regardless.

•

(P)                                                 
                                                                                     
                                              

Proof of weak duality in this form:
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Figure 7.11 from [DPV08] gives a general recipe for constructing the dual 
from the primal. 

•

Observation: The dual of the dual is the primal.

Proof: We consider the following forms of the primal and the dual (the same 
result is true no matter what form you work with):

                                                                              
    (P)         s.t.                                            s.t.      
                                                                                         

         

    
(D')     s.t.        

Using simple transformations, we find that (D) is equivalent to (D') where 

         

            
     s.t.       

As (D') is in in the "form" of (P), we can easily take its dual to obtain:

Notice that this last LP is equivalent to (P). 

Lec12p4, ORF363/COS323

   Lec12 Page 4    



Primal/dual possibilities

Again, we consider the following forms of the primal and dual.

                                                                              
    (P)         s.t.                                            s.t.      
                                                                                         

We know from the previous lecture that an LP can have three possibilities: either it 
has a finite optimum, or it is unbounded, or it is infeasible. Here are the possibilities 
that we can have when we consider a primal/dual pair:

Using only strong and weak duality, can you explain each entry of the table?

Image credit [DPV08]

An interpretation of the dual in a classic example

The example we will be looking at here is taken from [Wri05]. 

A student wants to purchase a snack from a bakery to meet certain dietary 
requirements by choosing the best combination of brownies and cheesecake. 
(The brownies are not from Amsterdam or else the decision would be obvious…)

•

The characteristics of each product are given in the following table.•
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The student is following some new diet trend which requires her to eat at 
least 6oz of chocolate, 8oz of cream cheese, and 10oz of sugar. 

•

Her goal is to satisfy these requirements at minimal cost. •

This problem (also known as the diet problem) can be solved using LP. Here, the 
decision variables are   , the amount of brownies, and   , the amount of 
cheesecake that the student decides to purchase.

The primal problem is then:

                                                      
     

           

                                                   s.t.                                
                                                                              
                                                                               
                                                                                      

The dual problem is given by 
                                                                 

                                                 s.t.                       
                                                                   
                                                                          

For this example, the dual has a nice interpretation. 
(In fact, the dual almost always has a nice interpretation.) 
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Let's consider the problem from the point of view of a grocery store that provides 
the baker with the required ingredients. We denote by         the prices of 
chocolate, sugar, and cream cheese respectively.  These prices are nonnegative 
and the store wants to know how it should set them.

The grocery store knows that the baker will only buy the ingredients if she is 
sure of making a profit on the item she sells. In other words, the sum of the 
cost of the ingredients should not exceed the price of the product.  This leads 
to the constraints for the store:

•

                                                               
                                                                      

If these constraints are satisfied, the grocery store knows that the baker will 
buy at least 6oz of chocolate, 10oz of sugar, and 8oz of cream cheese to 
satisfy the student's requirements. Hence, it should set the prices of these 
ingredients in a way that maximizes profit:

•

                   

As you see, the optimization problem that the grocery store has to solve is the 
dual problem.

Figures from http://myjollyfamily.com/
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Applications of duality

Max flow / Min cut

Max Flow

Recall that we covered this problem in our first lecture.

The goal was to ship as much oil as possible from S to T.•
The amount of oil shipped on each edge could not exceed the capacity of 
the edge.

•

For each node (except S and T), we must have flow in=flow out.•

This problem is called the max-flow problem. It can be written as an LP.
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What is min-cut?

A cut is a partition of the nodes of a graph into two disjoint non-empty 
subsets. An S-T cut is a cut that has node S on one side and node T on the 
other.

•

The value of an S-T cut is the sum of the weights on the edges that cross 
the cut from the subset including S to the subset including T (the edges 
going in the opposite direction are not included).

•

The (S-T) min-cut problem is the problem of finding an S-T cut with 
minimum value.

•

Example: We consider the example given on the previous page lecture.

The cut depicted below corresponds to the sets {S,C,F} and {A,B,D,E,G,T}.

The value of the cut is             This in fact must be the value of the 
min-cut as it matches the value of the max-flow! (See below.)

Link between min-cut and max-flow

It can be shown that if we take the dual of the maximum flow LP, we get a 
formulation of the min S-T cut problem.

•

Observe that the value of any S-T cut is clearly an upper bound on the 
maximum flow. (Indeed, any flow we can send from S to T has to go 
through the cut.) This result is in fact a statement of weak duality!

•

There always exists a cut whose value matches the optimal flow. This is a 
consequence of strong duality.

•

Note that the minimum cut and the maximum flow certify each other's 
optimality.

•
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Zero-sum games

One of the main theorems in game theory is about existence of equilibria 
in finite games. In the special case of the so-called "zero-sum games", this 
result is a direct corollary of strong duality in linear programming 
[DPV08, Sect. 7.5].

•

We are skipping this beautiful application since it's covered in ORF307. •

Robust linear optimization

-Chinese proverb 
(from [BEN09])

"To be uncertain is to be uncomfortable, but to be certain is to be ridiculous."

So far in this class we have assumed that an optimization is of the form•

        
               
                

where        are exactly known. In real life, this is most likely not the case; 

the objective and constraint functions are often not precisely known or at 
best known with some noise.

Robust optimization is an important subfield of optimization that deals 
with uncertainty. Under this framework, the objective and constraint 
functions are only assumed to belong to certain sets in function space 
(called the "uncertainty sets"). The goal is to make a decision that is 
feasible no matter what the constraints turn out to be, and optimal for 
the worst-case objective function.

•

We'll only be looking at robust linear programming, in fact a special form 
of it with polytopic uncertainty.

•
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Robust LP with polytopic uncertainty

This the special case where    
and    

are polyhedra. •

It means that    
              where          and         are given 

to us as input. Similarly, each    
is a given interval in    

•

s.t.   
     ,        

            
              

            

Clearly, we can get rid of the uncertainty in   because the worst-case scenario 
is achieved at the lower end of the interval. So our problem becomes:

•

(with abuse of notation, we are reusing   to denote the lower end of the 
interval)

A robust LP  is a problem of the form :•

          
              

         
         

                   

        
    

    

 

       
              

         
        

         

           

  
              

         
        

Notice that with no loss of generality, we are assuming there is no uncertainty in 
the objective function. This is because of the following equivalence:

•

where    
   and    

  are given uncertainty sets. 
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The inner LP has the form of the dual of an LP in standard form. This makes it 
easy to remember its dual (recall that the dual of the dual is the primal):

•

   
  

   
            

             
                           

      
   

   

        
                                                        

     

By strong duality, both problems have the same optimal value, so we can 
replace the inner LP by its dual and get

•

   
 

    

s.t.  

   
      

   
   

  
     
    

 
           

 
 

(2)

But now we are in business since we have two minimization problems inside 
each other and can combine them. The previous problem is equivalent to

•

s.t.   
               

        
             

                

(3)        
    

Proof:    Suppose we have an optimal     for (3). Then   is also feasible for 
   and the objective values are the same.
   Suppose we have an optimal  for (2). As  is feasible for (2), there must 
exist  verifying the inner LP constraint. Hence,      would be feasible for (3) 
and would give the same optimal value. 

LP (3) is a regular LP that we know how to solve. Duality has enabled us to 
solve a robust LP with polytopic uncertainty just by solving a regular LP!

LP (1) can be equivalently written as •

   
 

    

s.t.  
   
  

   
  

       

             

This is an LP with an LP in inside it. It doesn't seem like the type of thing we know 
how to solve! But duality will come to rescue! Let's take the dual of the inner LP.

Lec12p12, ORF363/COS323

   Lec12 Page 12    



References:

[DPV08] S. Dasgupta, C. Papadimitriou and U. Vazirani, Algorithms, McGraw 
Hills, 2008.

-

[BT97] D. Bertsimas and J.N. Tsitsiklis, Introduction to Linear Optimization, 
Athena scientific, 1997.

-

[Wri05] S. Wright, Notes on linear programming methods, University of 
Wisconsin, 2005.

-

[BEN09] A. Ben-Tal, L. El-Ghaoui, A. Nemirovski, Robust Optimization, 
Princeton University Press, 2009.

-

Notes:
LP duality is covered in Chapter 7 of [DPV08]. The topic of robust linear 
programming is not covered in the book.
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