A Working Knowledge of
Computational Complexity
for an Optimizer

Instructor: Amir Ali Ahmadi

Why computational complexity?

"What is computational complexity theory?

It’s a branch of mathematics that provides a formal framework for
studying how efficiently one can solve problems on a computer.

=This is absolutely crucial to optimization and many other computational sciences.

"|n optimization, we are constantly looking for algorithms to solve various
problems as fast as possible. So it is of immediate interest to understand the
fundamental limitations of efficient algorithms.

=So far in this class we’ve had a rule of thumb for checking if an optimization
problem is “easy”:

mSee if it’s convex!

=But this only scratches the surface. Are all nonconvex problems hard? Are some
of them hard? Are there even convex problems that are hard?

= \WWhat does it even mean to be hard?!

(M PRINCETON - 2 =l et’s begin by understanding what it means to have a “problem”!

UNIVERSITY mm.

2

Optimization problems/Decision problems/Search problems

=Let’s introduce these concepts using an example we know well: stable set (aka
independent set) of a graph.

=Recall that a stable setin a graph G is a subset of the nodes
with no edges among them.

=Given a graph G, find its largest stable set.

=Given a graph G and an integer b, decide if there exists a stable set of size > b?

(answer to a decision question is just YES or NO)

=Given a graph G and an integer b, find a stable set of size = b or declare that none exists.

=|t turns out that all three problems are equivalent, in the sense that if you could solve
one efficiently, you could also solve the other two. See Ex. 8.1,8.2 of [DPV].

=\We will focus on decision problems, since it’s a
"R‘NCETON H bit cleaner to develop the theory there. 3

UNIVERSITY =

A “problem” versus a “problem instance”

=A (decision) problem is a general description of a problem to be answered with
yes or no.

=Every decision problem has a finite input that needs to be specified for us to
choose a yes/no answer.

mEach such input defines an instance of the problem.

=A decision problem has an infinite number of instances.
(Why doesn’t it make sense to study problems with a finite number of instances?)

=Different instances of the STABLE SET problem:
(It is common to use capital letters for the name of a decision problem.)

("3 PRINCETON == '
UNIVERSITY mm. & S & S

Examples of decision problems

=LINEQ

"Input: An m X n matrix A and an m X 1 vector b, both with rational entries.

"Question: Is there a solution to the linear system Ax = b?

An instance of LINEQ: 2% 4+ Fnq= € H _ (2 ?—) o b= ¢)
l/?_’J‘(. ~ 7(7_ = —-)45 _|/g
=ZOLINEQ

"lnput: An m X n matrix A and an m X 1 vector b, both with rational entries.

=Question: Is there a 0/1 solution x to the linear system Ax = b?

An instance of ZOLINEQ: 2% 4+ T ra= € H" 2 F b= 4
s =Mk (*4_ - o

Input is rational so we can represent it with a finite number of bits. This
is the so-called “bit model of computation”, aka the “Turing model.”

(.-l PRINCETON —
UNIVERSITY =

Examples of decision problems

sLP

"Input: An m X n matrix A,an m X 1 vector b, and ann X 1 vector c, all rational
a rational number k

=Question: Is the optimal value of the LP (in standard form) < k?
(This is equivalent to testing LP feasibility (why?).)

Aninstance of LP: A. (¢ F k4, 5:(1), e= ('Y, k=5
[50%) 4

=p
"lnput: same as above

=Question: Is there an integer feasible solution to the LP with objective value < k?

PRINCETON ==

UNIVERSITY =

Examples of decision problems

Let’s look at a problem we
have seen...

An instance of MAXFLOW:

Can you formulate the
decision problem?

*MAXFLOW

"Input: A directed graph G(V, E), nonnegative rational numbers c; on each edge,
a designated node S, a designated node T, a rational number k.

=Question: Is there a flow of value = k from S to T that respetcs the edge cost
constraints and the conservation of flow constraints?

(.-l PRINCETON -
UNIVERSITY =

Examples of decision problems

=A graph is said to be if there is a way to color its nodes with k colors
such that no two adjacent nodes get the same color.

=For example, the following graph is
3-colorable.

="Graph coloring has important
applications in job scheduling.

="COLORING
"Input: An undirected graph G and a positive integer k.

"Question: Is the graph k-colorable?

=\We want to understand how fast can all these problems be solved?

PRINCETON mm~
UNIVERSITY =

Size of an instance

=To talk about the running time of an algorithm, we need to have a notion of the
“size of the input”.

=Of course, an algorithm is allowed to take longer on larger instances.

"COLORING

mReasonable candidates for input size:
*Number of nodes n

*Number of nodes + number of edges
(number of edges can at most be n(n-1)/2)

*Number of bits required to store the adjacency
matrix of the graph

LT = R S S R R B SR S R S
I T = T = T B S T = T SO B
T R A I = I = T = T R = T S
I e T S = = B R = T = T SO o B
I e T = R = B R = T = T = T = B
I N N = = =]
I T = T I I I = T T = T =
B e O D 000000
0000 0oL oo R
L = = T T = T = T SO R
L R O = T R = = R =]

(.-l PRINCETON -
UNIVERSITY =

L= I = s T s S S = T R I = R =]

Size of an instance

=|n general, can think of input size as the total

"For example, consider our LP problem:

sLP

"Input: An m X n matrix A,an m X 1 vector b, and ann X 1 vector ¢, all rational
a rational number k

=Question: Is the optimal value of the LP (in standard form) < k?

e Inputsizeis bounded by 2(mn +m +n+ 1) logL, where L is the largest
integer appearing in the numerator or denominator of any entry of 4, b, ¢, k.

e Same idea holds for all other decision problems we introduced.

PRINCETON mm~
UNIVERSITY =

10

Useful notation for referring to running times

Definition. Let f, g: R, —» R,. We write

e f(n)=0(g(n)),ifIng,c > 0, such that
f(n) <cg(n),vn = n,.

« f(n)=0Q(gn)),if Ing, ¢ > 0, such that
f(n) =2 cg(n),vn = n,.

« f(n)=0(g(n),if we have both f(n) = 0(g(n))and f(n) = Q(g(n)).

Examples.

*5n° + 2n” + 40 = O(n°).
"nlogn = 0(n?).

"nlogn = Q(n).

e,k > 0,2" = Q(n").

(.-l PRINCETON -
UNIVERSITY =

- 2
1n+30z O (n? 1

Polynomial-time and exponential-time algorithms

=A is an algorithm whose running time as a function of
the input size is O (p(n)) for some polynomial function p.

=Equivalent definition: Running time is O (n*) for some positive integer k.

*Note: this is the worst-case running time over all inputs of size n.

"An is an algorithm whose running time as a
function of the input size is (1(2°™) for some positive constant c.

=Once again, when we talk about running time for a given input size n, we
mean the worst-case running time over all inputs of size n.

=There are also algorithms with running time in between (e.g., O(nlog”),
but these also are perceived as slow.

Something you all know: Poly-time: Exp-time:

PRINCETON mm~
UNIVERSITY =

12

On the awfulness of 2"

PRINCETON
UNIVERSITY

| | 1
S

20 | 21 | 22 | 23| 24 | 25
28 | 29 | 210 |g11| 912|913

216 | 217 | 218 | 219 | 920 | 921

o | 224 | 225 | 936 | 927 928 | 919
931 | 233 | 934 | 235 | 236 | 237
240 | 941 | 242 | 243 | 944 | 945
248 249 250 | 251 (252 | 253 54 55
256 | 257 | 258 | 259 | 960 | 961 | 962 | 263

for the story.

grains of rice on the

board: 2°* — 1 =18,446,744,073,709,551,615

See page 233 of [DPV]

Sissa
(credited for creating
the game of chess)

13

(.-l PRINCETON =
UNIVERSITY ==

Comparison of running times

a Size n
Time
complexity 10 20 30 40 50 60
function
00001 .00002 .00003 00004 .00005 00006
i second | second second second second second
2 .0001 0004 .0009 0016 0025 0036
% second | second second second second second
3 001 008 027 064 125 216
i second second second second second second
s | 3.2 243 1.7 5 13.0
i second | seconds | seconds minutes minutes minutes
g 001 1.0 17.9 12.7 35.7 366
second | second | minutes days years centuries
3 059 58 6.5 3855 2x 108 1.3x10"
second | minutes years centuries | centuries | centuries
OREE Image credit: [GJ79]

14

Can Moore’s law come to rescue?

Size of Largest Problem Instance

Solvable in 1 Hour

Ic;rr:]mf)lexity With present | With computer With computer
function computer 100 times faster | 1000 times faster
n N, 100 N, 1000 N,

n? N, 10 N, 316 N,
n? N; 4.64 N; 10 NV,

n’ Ny 25 N, 3.98 N,
i Ns Ns+6.64 Ns+9.97
3" Ng N¢+4.19 N¢+6.29

PRINCETON —H

UNIVERSITY ==

Effect of improved technology on several polynomial and exponential

time algorithms.

ORFE

Image credit: [GJ79]

15

The complexity class P

=The class of all decision problems that admit a polynomial-time algorithm.

Viien E=ORFE

Example of a problem in P

"PENONPAPER

"Input: A connected undirected graph.

="Question: Can you draw it without lifting your pen from the paper?

O R K

answer to PENONPAPERis YES if and only if “every node, with the possible
exception of two nodes, has even degree.”

= This condition can obviously be checked in polynomial time.

"Hence PENONPAPEREP.

this problem is asking if there is a path that visits every edge exactly once.

=|f we were to ask for a path that instead visits every node exactly once, we would have

a completely different story in terms of complexity!
PRINCETON ma 17

UNIVERSITY =

How to prove a problem is in P?

=Develop a poly-time algorithm from scratch! Can be far from trivial (examples below).

*"Much easier: use a poly-time hammer somebody else has developed. ()

=LINEQ (solve a system of linear equations)
=Gaussian elimination -- 0(n?)
=Can also use, e.g., the conjugate gradient algorithm -- 0(n?)

=(Faster algorithms known: Google Strassen)

*LP (solve a system of linear inequalities)

=\Was open for a long time — simplex doesn’t do it (at least, we don’t know how to modify it so it does)
*The ellipsoid algorithm (Khachiyan-1979)

=Interior point algorithms (Karmarkar-1984)

"PRIMES (decide if a given integer is prime)

o, ?}&60'10
=\Was open for a long time -- Proved to be in P by Agrawal-Kayal-Saxena in 2002. ey o o, ’
s, f’b
= Kayal and Saxena were undergraduates!

"Why doesn’t the naive algorithm work? “Given n, check all candidate divisors up to y/n."

New Method Said to Solve Key Problem In Math q‘bf

&
PflIJOrA q_'mrg

Thr computer scientists have solved a longstanding mathematics problem by dev
way for a mmpu‘t T to tel H quickly and definitively whether a number is prime -- that is, l ther
it is evenly divisible only by itself and 1.

(.-l PRINCETON
UNIVERSITY

1]]
1 11]
L7 \J

An aside: Factoring

=Despite knowing that PRIMES is in P, it is a major open problem to determine
whether we can factor an integer in polynomial time.

R5A-16824 = 13506641086599522334968321627888596993888147568566702752448514385152651868
A8595338339482871565719094417982072821644715513736804197839641917430464965
8927425623934102886438320211083729587257623585096431168564873581508187510676
59462928556368552947521350085287941637732853398618975054433499981115885697

7236890927563
$100,000 prize money by RSA

R5A-2848 = 25195%99847565789349402718324080483985714292821262040832027777137836843602082879
7595556264818525888784406918290641249515082189298559149176134582808489120872
8449926873928872877767359714183472782618903758149718246911658776133798590957
BEe9733845974880842840179742910864245869181719511874612151517265463228221686
9987549182422433637259085141865462043576798423387184774447928739934236584823
8242811981638158186748104516603773068562016196762561338441436838339844149526
3443219811465754445417842482892461651572335877870774981712577246796292638635
b373289912154831438167899885040445364823527381951378636564391212018397122822

120720357 $200,000 prize money by RSA

=The RSA challenge is no longer active (as of 2007), but factoring these numbers
will result in an automatic A+ in this class!

mGot some free time over the winter break?

(.-l PRINCETON —
UNIVERSITY =

Reductions

="Many new problems are shown to be in P via a reduction to a problem that is
already known to be in P.

=\What is a reduction?
=\ery intuitive idea -- A reduces to B means: “If we could do B, then we could do A.”
=Being happy in life reduces to finding a good partner.
=Landing a good job reduces to graduating from Princeton.

=Getting an A+ in ORF 363 reduces to factoring RSA-2048.

=\Well-known joke - mathematician versus engineer boiling water:

=Day 1:

(.-l PRINCETON -
UNIVERSITY =

Reductions

=A reduction from a decision problem A to a
decision problem B is

=3 “general recipe” (aka an algorithm)
for taking any instance of A and explicitly
producing an instance of B, such that

sthe answer to the instance of A is YES if
and only if the answer to the produced
instance of B is YES.

(OK for our purposes also if the YES/NO
answer gets flipped.)

=This enables us to answer A by answering B.

(-3 PRINCETON mm-

HE
UNIVERSITY mm.

21

MAXFLOW-LP

*MAXFLOW

=Input: A directed graph G(V/, E), nonnegative rational numbers c; on each edge,
a designated node S, a designated node T, a rational number k.

=Question: Is there a flow of value > k from S to T that respetcs the edge cost
constraints and the conservation of flow constraints?

sLP

"Input: An m X n matrix A,an m X 1 vector b, and ann X 1 vector c, all rational
a rational number k.

=Question: Is the optimal value of the LP > k?

A l 4 ’:-"/-q\'-i_q____;- /___\ W\CU(15n,+ 1564. "(S(_
. /\ "'\.-f" G |
: . s.t.
/ :) y i Poly-time
E/ ! "J'/B } -]15]\ I reduction xsn’ Kan» Xggor -- » er %o
|_._ g | _/-' N
\\ } . ml (shown on one instance) Aoy 66 Xpas2) K <10, X1
10\ / g W - -
\T’/ A __.*/ \"'V 4 58 ~ Iﬂr_)"’ ap™ "AE

xsc' = 'lcb + e
Cl PRINCETON mmr H
UNIVERSITY mmo ﬂCr— -ncH: Hpp-

Polynomial time reductions

=So we say that “MAXFLOW reduces to LP”. (Notation: MAXFLOW—>LP.)

=Since we know how to solve LP in polynomial time (e.g., via interior point
methods), now we know how to solve MAXFLOW in polynomial time. So
MAXFLOWEP.

=This argument relies crucially on the fact that the reduction is polynomialin
length.
=Before we even solve the LP, we need to make sure its size is not too big (e.g., it doesn’t have too

many decision variables, too many constraints, or data that takes an exponential number of bits to
write down.)

*\What does “not too big” mean? The size needs to be polynomial in the size of the instance of the
original problem (in this case MAXFLOW).

=\Without this constraint, one could give, e.g., a simple reduction from STABLE SET to LP (do you see
how)? This should not happen (we’ll see why soon).

=|In your HW problem you need to argue that a certain problem about scheduling
appointments is in P by giving a reduction. Don’t forget to argue that the length of
the reduction is polynomial.

PRINCETON mm~
UNIVERSITY =

23

MINCUT

6 1 Djxﬂmhﬁ
"A cutis a partition of the nodes . /J\ RS
of a graph into two (non-empty) S8 e T E
sets U and U. Nk j:/\/
. cuf value \C ; (F
"The valu is the sum of e

edge weights going from U to U.

*MINCUT

"Input: A directed graph G(V, E), nonnegative rational numbers c; on each edge,
a rational number k.

=Question: Is there a cut of value < k?

=|s MINCUT in P?

(W PRINCETON == . 24
UNIVERSITY = mYes! We'll reduce it to LP.

MIN S-T CUT

=*MIN S-T CUT

=Input: A directed graph G(V, E'), nonnegative
rational numbers ¢; on each edge, a rational number
k, two designated nodesSand T.

=Question: Is there a cut of value < k?
(that leaves S on one side and T on the other)

=Strong duality of linear programming implies
the minimum S-T cut of a graph is exactly equal
to the maximum flow that can be sent from S
toT.

*Hence, MIN S-T CUT>MAXFLOW

=\We have already seen that
MAXFLOW—> LP.

=But what about MINCUT? (without - "

designated S and T) 1(\)) \ /\/

" PRINCETON mm" L8 ————™ T
'UNIVERSITY A _/ 5 L/

MINCUT->MIN S-T CUT

=Pick a node (say, node A)

"Compute MIN S-T CUT from A to every other
node

"Compute MIN S-T CUT from every other
node to A

=Take the minimum over all these 2(|V]-1)
numbers

"That’s your MINCUT!

=The reduction is polynomial in length.

(.-l PRINCETON -
UNIVERSITY =

26

Overall reduction

=\We have shown the following:

MINCUT->MIN S-T CUT->MAXFLOW->LP

"Polynomial time reductions compose (why?):

MINCUT->LP

*MINCUTEP

=Unfortunately, we are not so lucky with all
decision problems...

=Now comes the bad stuff...

(.-l PRINCETON -
UNIVERSITY =

27

MAXCUT

*MAXCUT

sInput: A graph G(V, E), nonnegative rational numbers c¢; on each edge, a rational
number k.

=Question: Is there a cut of value > k?

"Examples with edge | :
costs equal to 1:

=Cut value=8 \

=Cut value=23
(optimal)
=To date, no one has come up with a polynomial time algorithm for MAXCUT.

=\We want to understand why that is...

PRINCETON == 28
UNIVERSITY —mm.

The traveling salesman problem (TSP)

TSP

*Input: A graph G(V, E), nonnegative rational numbers c; on each edge, a rational
number k.

=Question: Is there a tour of cost < k that visits each node exactly once?

—=2 0

AAVANY
|
AN
’5 1
6
A1

CD”L = ,?

=Again, nobody knows how to solve this efficiently (over all instances).
=Note the sharp contrast with PENONPAPER.

"Amazingly, MAXCUT and TSP are in a precise sense “equivalent”: there is a
polynomial time reduction between them in either direction.
PRINCETON ma 29

UNIVERSITY =

24,978 Cities in Sweden
Solved in 2004

PRINCETON mm~
UNIVERSITY =

15,112 Cities in Germany

Solved in 2001

Reference:

TSP

00000 ATAT =% 8:23 PM 5 - 00000 ATAT = 8:28 PM L -
{ Home Exact Solver < Home Bounds
pr2392.txt #Nodes 2392 Random #Nodes 40

gt

28

Tour length: 378032 Moats: 18288.2 (Gap 0.113%)

Run View Load @ Run View Load @

http://www.math.uwaterloo.ca/tsp 30

The complexity class NP

=A decision problem belongs to the class NP (Nondeterministic Polynomial

time) if “ J
= More precisely, has a “certificate” of its correctness
that can be

=Examples: TSP, MAXCUT, PENONPAPER....what’s the certificate in each case?

Remarks.

»"A nondeterministic computeris a machine that can “guess” an answer and then
verify it. It’s a very unrealistic computer.

III

*NP does not mean “not polynomial”! There are many easy problems in NP (e.g.,

ADDITION, LINEQ).
"PCNP. (The poly-time algorithm itself is a certificate.)

=Note that for a given decision problem, it’s not at all clear that a short certificate for
the YES answer also implies a short certificate for the NO answer. (Think, e.g., of TSP.)

PRINCETON mm~ 31

HE
UNIVERSITY =

The complexity class NP

*ADDITION =TSP
*MULTIPLICATION = MAXCUT
=LINEQ =STABLE SET
=P =SAT
*MAXFLOW =3SAT
*MINCUT =PARTITION
*MATRIXPOS *KNAPSACK
»SHORTEST PATH u|p

OLHONIY
=SDP , *COLORING
*PRIMES =VERTEXCOVER
*ZEROSUMNASH »3DMATCHING
*PENONPAPER, .. =SUDOKU,...

Wi EORFE 32

NP-hard and NP-complete problems

=A decision problem is said to be if every problem in NP reduces to it via a
polynomial-time reduction.
(roughly means “harder than all problems in NP.”)

=A decision problem is said to be if
(i) Itis NP-hard
(ii) Itisin NP.

(roughly means “the hardest problems in NP.”)

Remarks.
=*NP-hardness is shown by a reduction from a problem that’s already known to be NP-hard.

="Membership in NP is shown by presenting an easily checkable certificate of the YES
answetr.

=*NP-hard problems may not be in NP (or may not be known to be in NP as is often the
case.)

"M PRINCETON == 33
UNIVERSITY —mm.

=*ADDITION
*MULTIPLICATION
“LINEQ

aLP

*MAXFLOW
*MINCUT
=*MATRIXPOS
*SHORTEST PATH
“SDP ,

“PRIMES
*ZEROSUMNASH
*PENONPAPER,...

Viien E=ORFE

The complexity class NP

NP

OLAIONIY

NP-complete

=TSP

= MAXCUT
=STABLE SET
=SAT

=3SAT
="PARTITION
=KNAPSACK
=|P
="COLORING
=\VVERTEXCOVER
=3DMATCHING
=SUDOKU,...

34

The satisfiability problem (SAT)
“SAT

="lnput: A Boolean formula in conjunctive normal form (CNF).

=Question: Is there a 0/1 assignment to the variables that satisfies the formula?

P= xvyve)N (xVI) A (4v) /\W
~— N~
T /

Formw\‘q \’

Clavses
Variables Y, 2
V: OR, A AND , - NOT %

Liteval. a variable 6r its CamPfemeM".

AND OR.
ey
B ¥ pI)-X

35

0 0 0
0 1 0
1 0 0
1 1 1

(.-l PRINCETON '
UNIVERSITY =

The satisfiability problem (SAT)
“SAT

="lnput: A Boolean formula in conjunctive normal form (CNF).

+Question: Is there a 0/1 assignment to the variables that satisfies the formula?
XVAVZ)N (CVI) A (4v) ATV IVE)
YES w«=V9=\h =0
XVYVZ)N (xv'j) A\ (4v 2) /\@ij@j/\ (X v 2)

NO

PRINCETON ==~ 36

UNIVERSITY =

3SAT
=3SAT

"Input: A Boolean formula in conjunctive normal form (CNF), where each clause has
exactly three literals.

=Question: Is there a 0/1 assignment to the variables that satisfies the formula?

(XVGVR)A (RVIVE)A (2 VwVz)a(Jvwva)

=There is a simple reduction from SAT to 3SAT. (See, e.g., [DPV, Chap. 8]).

="Hence, since SAT is NP-hard, then so is 3SAT. Moreover, 3SAT is clearly in NP (why?),
so 3SAT is NP-complete.

(.-l PRINCETON ——
UNIVERSITY =

37

Reductions (again)

=A reduction from a decision problem A to a
decision problem B is H

=3 “general recipe” (aka an algorithm)
for taking any instance of A and explicitly
producing an instance of B, such that

sthe answer to the instance of A is YES if
and only if the answer to the produced
instance of B is YES.

(OK for our purposes also if the YES/NO
answer gets flipped.) Y

=This enables us to answer A by answering B. @

=This time we use the reduction for a different purpose:

= |f Ais known to be hard, then B must also be hard.

(.-l PRINCETON ——
UNIVERSITY =

The first 21 (official) reductions

REDUCIBILITY AMONG COMBINATORIAL PROBLEMS*

Richard M. Karp

University of California at Berkeley

Abstract: A large class of computational problems involve the

determination of properties of graphs, digraphs, integers, arrays

of integers, finite families of finite sets, boolean formulas and

elements of other countable domains. Through simple encodings SATISFIABILITY
from such domains into the set of words over a finite alphabet

CLIQUE 0-1 INTEGER SATISFTIABILITY WITH AT
[\ PROGRAMMING MOST 3 LITERALS PER CLAUSE

NODE SET

COVER PACKING CHROMATIC NUMBER

FEEDBACK FEEDBACK DIRECTED

NODE SET ARC SET ﬁfﬁﬁfgm = cj:gmc /ﬁg‘é‘gﬁ cover
i . JwI}IHENSfEﬁﬂL KNAPS? HIBTING\STEINER
=Today we have thousands of UE;%E%I_;D e S
NP-complete problems. In all SEQUENCING PARTITION
areas of science and
engineering. e

FIGURE 1 - Complete Problems

(.-l PRINCETON '
UNIVERSITY =

The value of reductions

\(

!
|

g

5

.'\
'|
LSS

| can't find an efficient algorithm, | guess I'm just too dumb.

| can't find an efficient algorithm, because no such algorithm is possible

R

PRINCETON mm” | can't find an efficient algorithm, but neither can all these famous people. [G arey, Johnso n] 40

UNIVERSITY =

Practice with reductions

I’ll do a few reductions for you:

=3SAT->STABLE SET (also in [DPV, Chap 8§, p. 249])

=STABLE SET-> 0/1 IP (you already know this from lecture 1)
=3SAT->POLYPOS (degree 6)

In your homework you have to do:
=*PARTITION—>POLYPOS (degree 4)
=STABLE SET-=>CHEAPHOST

More practice: try to prove NP-hardness of problems on the following slides. Read
[DPV, Chap. 8] for many more.

[-3l PRINCETON ==

1
@V UNIVERSITY =

41

3SAT->STABLE SET

We show the reduction on an instance only. The pattern should be clear.

¢= (VYU Z) A (WYVR)A (LV 4VE)A (T VT VE)
(/(c!duiej)

R ' . o ,
Conﬁruchou‘: For eack clause cvedte a‘fnang'c. Ac;raﬂ fnm,i,)e)

Connect Cach variable to i1y Lo le ment .

Clonwm - Cf 5 Snﬁ)”fn'ala'e(-_—;y O((G))/K.

"

PRINCETON mm~ 42

HE
UNIVERSITY =

STABLE SET = 0/1 Integer Programming

G iven G (\/) E)

X (G)yk
T,
é IN K

105 <\ if ujek

X4 € o,lrj v, —h

5 feasible .

(.-l PRINCETON -
UNIVERSITY =

STABLE SET - Feasibility of Quadratic Equations
G ivew G (\/)E)

(-8 PRINCETON mm~
UNIVERSITY =

3SAT->POLYPOS (degree 6)

We show the reduction on an instance only. The pattern should be clear.
Start with any ingTance of 3SAT, Such as:
P= (VR V) A (VI VA) A (Y EVH,)
ConsTruct P as

ly en(oding clavie

2 —
P h‘q = 2;—‘ Cx;. U —'71.;_)) 'T-[].f{l-')h)J.-'l}-l) {){l+{1-’l'l1)+'13..’2) fll'*“"ﬁ'l)Jri]'?’)]l

— Clowse2
€n Cotln"'- / -~ M
J +[((‘l—'lﬂ"r(\-“lf)+'l3—1) [(40X)4 Xy=2) ()41 ?1'5-"})]

Clowse 3

o/l rfclmfmcnf

- 2
+ [L%x+11+ﬂq~l) 4 X4 %y-2) ('}hwl+7tq~3]) ,

Obseyve Yhat the yeduwetion is fpo"‘a.mm;ql " ,qu}‘}h-
PRINL’E'I'UN mm 45

UNIVERSITY =

3SAT->POLYPOS (degree 6)

(,ltl:um ! ﬂ ﬂ,%efa.\ nstence Cf‘ of ISAT will be $ﬂ+;f7t"°'UE
AR Such that P(M)<o (in fact p(R)=0), whtre Pis (onstrocted
as above .
P un ToKe % fo be the saliffping Assign men? of ISAT.
All the termg of P vanish{ Why?)

(N Soppose G ot satis fiable. Claime po) 5o Ve
Pis o Sum of Sgnowes =) P(N) o Vl&@ﬁ-
o I g {0, 11", Fhen) (li[l-?tg))l Yo (why?)
o T4 Aoy, then ot least one derm out of The

Terms encoding the clavies will be positive . [

.-l PRINCETON Y
UNIVERSITY =

46

The knapsack problem

=KNAPSACK

*Input: A list of item values p4, ..., p,,, a list of weights on the same items
W1, ..., Wy, two rational numbers P, W.

=Question: Can the thief steal a set of items of total value = P that fit in his knapsack
of total weight W?

-3 PRINCETON BEDEI]
UNIVERSITY =m0

47

The partition problem
*PARTITION

sInput: A list of positive integers aq, ..., a,,.

="Question: Can you split them into to bags such that the sum in one equals the sumiin
the other?

=Note that the YES answer is easily verifiable.

= How would you efficiently verify a NO answer? (no one knows)
Wi E=ORFE

48

Testing polynomial positivity
*POLYPOS

"Input: A multivariate polynomial p(x) := p(x4, ..., X,,) of degree four.

"Question: Is there an x € R" for which p(x) < 0?

"Example:
p(x) = xi + 2x2x5 — 3x1x3 + 5x5 + 6x2x, — x1X,%3 + 4x5 + 100.

=A reduction from PARTITION to POLYPOS is on your homework.

s there an easy certificate of the NO answer? (the answer is believed to be negative)

=|s there an easy certificate of the YES answer? We don’t know; the obvious approach

doesn’t work:
pl)= (0-2)"% (% 2% 1) o (Kn-)

n
2

/)('){):D = 7(*1 = 2

Wi =An aside: Testing convexity of polynomials is also NP-hard! [AOPT13] *°

)

But what about the first NP-complete problem

-
e

=Every problem in NP reduces to
CIRCUIT SAT.

«The Cook-Levin theorem. I &

An instance of CIRCUIT SAT.

"|n a way a very deep theorem.
=At the same time almost a tautology. @
=See page 260 of [DPV] for a short

explanation. @ @

(=) 00

Wi = =CIRCUIT SAT=> SAT-> 3SAT (easy reductions; see [DPV]).

50

The domino effect

=All NP-complete problems reduce to each other!

=|f you solve one in polynomial time, you solve ALL in polynomial time!

(.-l PRINCETON -
UNIVERSITY =

51

The S1M question!

e Most people believe the answer is NO!
e Philosophical reason: If a proof of the Goldbach conjecture (or any other longstanding

open problem in mathematics) were to fly from the sky, we could efficiently verify it.
But should this imply that we can find this proof efficiently? P=NP would imply that the

answer is yes.
PRINCETON mm~
UNIVERSITY mm.

52

(¥ PRINCETON ==/
UNIVERSITY —mm.

Nevertheless, there are believers too...

e Over 100 wrong proofs have appeared so far (in both directions)! See
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

53

Main messages...
=Computational complexity theory beautifully classifies many problems of optimization
theory as easy or hard
=At the most basic level, easy means “in P”, hard means “NP-hard.”
=The boundary between the two is very delicate:
*MINCUT vs. MAXCUT, PENONPAPER vs. TSP, LP vs. IP, ...

"|mportant: When a problem is shown to be NP-hard, it doesn’t mean that we should
give up all hope. NP-hard problems arise in applications all the time. There are good
strategies for dealing with them.

=Solving special cases exactly

=Heuristics that work well in practice

=Using convex optimization to find bounds and near optimal solutions

= Approximation algorithms — suboptimal solutions with worst-case guarantees
="P=NP?

=Maybe one of you guys will tell us one day.

(-3 PRINCETON mmr

HE
W UNIVERSITY mm.

54

Notes & References

Relevant reading for this lecture is Chapter 8 of [DPVO0S].

[DPV08] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms.

McGraw Hill, 2008.

[GJ79] D.S. Johnson and M. Garey. Computers and Intractability: a
guide to the theory of NP-completeness, 1979.

[BTOO] V.D. Blondel and J.N. Tsitsiklis. A survey of computational
complexity results in systems and control. Automatica, 2000.

[AOPT13] NP-hardness of testing convexity:

http://web.mit.edu/~a a a/Public/Publications/convexity nphard.

pdf

PRINCETON ==¢
UNIVERSITY =

55

http://web.mit.edu/~a_a_a/Public/Publications/convexity_nphard.pdf

