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Why computational complexity?
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What is computational complexity theory?

It’s a branch of mathematics that provides a formal framework for 
studying how efficiently one can solve problems on a computer.

This is absolutely crucial to optimization and many other computational sciences.

In optimization, we are constantly looking for algorithms to solve various 
problems as fast as possible. So it is of immediate interest to understand the 
fundamental limitations of efficient algorithms.

So far in this class we’ve had a rule of thumb for checking if an optimization 
problem is “easy”: 

See if it’s convex! 

But this only scratches the surface. Are all nonconvex problems hard? Are some 
of them hard? Are there even convex problems that are hard?

 What does it even mean to be hard?!

Let’s begin by understanding what it means to have a “problem”!



Optimization problems/Decision problems/Search problems
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(answer to a decision question is just YES or NO)

Optimization problem:

Decision problem:

Search problem:

It turns out that all three problems are equivalent, in the sense that if you could solve 
one efficiently, you could also solve the other two. See Ex. 8.1,8.2 of [DPV].

We will focus on decision problems, since it’s a 
bit cleaner to develop the theory there.



A “problem” versus a “problem instance”
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A (decision) problem is a general description of a problem to be answered with 
yes or no. 

Every decision problem has a finite input that needs to be specified for us to 
choose a yes/no answer.

Each such input defines an instance of the problem.

A decision problem has an infinite number of instances. 
(Why doesn’t it make sense to study problems with a finite number of instances?)

Different instances of the STABLE SET problem:

(It is common to use capital letters for the name of a decision problem.)



Examples of decision problems
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LINEQ

An instance of LINEQ:

ZOLINEQ

An instance of ZOLINEQ:

Remark. Input is rational so we can represent it with a finite number of bits. This 
is the so-called “bit model of computation”, aka the “Turing model.’’



Examples of decision problems
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LP

An instance of LP:

(This is equivalent to testing LP feasibility (why?).)

IP



Examples of decision problems
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MAXFLOW

An instance of MAXFLOW:

Let’s look at a problem we 
have seen…

Can you formulate the 
decision problem?



Examples of decision problems
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COLORING

For example, the following graph is 
3-colorable.

Graph coloring has important 
applications in job scheduling.

We want to understand how fast can all these problems be solved?



Size of an instance
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To talk about the running time of an algorithm, we need to have a notion of the 
“size of the input”.

Of course, an algorithm is allowed to take longer on larger instances.

COLORING STABLE SET

Reasonable candidates for input size:

Number of nodes n

Number of nodes + number of edges 
(number of edges can at most be n(n-1)/2)

Number of bits required to store the adjacency 
matrix of the graph



Size of an instance
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In general, can think of input size as the total number of bits required to represent 
the input.

For example, consider our LP problem:

LP



Useful notation for referring to running times

11



Polynomial-time and exponential-time algorithms 
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Something you all know: Poly-time: Exp-time:
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Sissa
(credited for creating 
the game of chess)

See page 233 of [DPV] 
for the story.



Comparison of running times

14Image credit: [GJ79]



Can Moore’s law come to rescue?

15Image credit: [GJ79]



The complexity class P
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The class of all decision problems that admit a polynomial-time algorithm.



Example of a problem in P
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PENONPAPER

Peek ahead: this problem is asking if there is a path that visits every edge exactly once.

If we were to ask for a path that instead visits every node exactly once, we would have 
a completely different story in terms of complexity!



How to prove a problem is in P?
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Develop a poly-time algorithm from scratch! Can be far from trivial (examples below).

Much easier: use a poly-time hammer somebody else has developed. (Reductions!)



An aside: Factoring
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Despite knowing that PRIMES is in P, it is a major open problem to determine 
whether we can factor an integer in polynomial time.

$200,000 prize money by RSA

$100,000 prize money by RSA

The RSA challenge is no longer active (as of 2007), but factoring these numbers 
will result in an automatic A+ in this class!

Got some free time over the winter break?



Reductions
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Many new problems are shown to be in P via a reduction to a problem that is 
already known to be in P.

What is a reduction?

Very intuitive idea -- A reduces to B means: “If we could do B, then we could do A.”

Being happy in life reduces to finding a good partner.

Landing a good job reduces to graduating from Princeton.

Getting an A+ in ORF 363 reduces to factoring RSA-2048.

…

Well-known joke - mathematician versus engineer boiling water:

Day 1:

Day 2:



Reductions
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A reduction from a decision problem A to a 
decision problem B is  

a “general recipe” (aka an algorithm)
for taking any instance of A and explicitly 
producing an instance of B,  such that

the answer to the instance of A is YES if 
and only if the answer to the produced 
instance of B is YES.
(OK for our purposes also if the YES/NO 
answer gets flipped.)

This enables us to answer A by answering B.



MAXFLOW→LP
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MAXFLOW

LP

Poly-time
reduction
(shown on one instance)



Polynomial time reductions
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In your HW problem you need to argue that a certain problem about scheduling 
appointments is in P by giving a reduction. Don’t forget to argue that the length of 
the reduction is polynomial.



MINCUT
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MINCUT

Is MINCUT in P?

Yes! We’ll reduce it to LP.



MIN S-T CUT
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MIN S-T CUT

Strong duality of linear programming implies 
the minimum S-T cut of a graph is exactly equal 
to the maximum flow that can be sent from S 
to T.

Hence, MIN S-T CUTMAXFLOW

We have already seen that
MAXFLOW LP.

But what about MINCUT? (without 
designated S and T)

(that leaves S on one side and T on the other)



MINCUTMIN S-T CUT
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Pick a node (say, node A)

Compute MIN S-T CUT from A to every other 
node

Compute MIN S-T CUT from every other 
node to A

Take the minimum over all these 2(|V|-1) 
numbers

That’s your MINCUT!

The reduction is polynomial in length.



Overall reduction
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We have shown the following:

MINCUTMIN S-T CUTMAXFLOWLP

Polynomial time reductions compose (why?):

MINCUTLP

Unfortunately, we are not so lucky with all 
decision problems…

Now comes the bad stuff…



MAXCUT
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MAXCUT

Examples with edge 
costs equal to 1:

To date, no one has come up with a polynomial time algorithm for MAXCUT.

We want to understand why that is…

Cut value=8

Cut value=23
(optimal)



The traveling salesman problem (TSP)
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Again, nobody knows how to solve this efficiently (over all instances).

Note the sharp contrast with PENONPAPER.

Amazingly, MAXCUT and TSP are in a precise sense “equivalent”: there is a 
polynomial time reduction between them in either direction.

TSP



TSP

30Reference: http://www.math.uwaterloo.ca/tsp



The complexity class NP
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A decision problem belongs to the class NP (Nondeterministic Polynomial 
time) if “the YES answer to any instance is easily verifiable.”

 More precisely, every YES instance has a “certificate” of its correctness 
that can be verified in polynomial time.

Examples: TSP, MAXCUT, PENONPAPER….what’s the certificate in each case?



The complexity class NP
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RINCETO

TSP

 MAXCUT

STABLE SET

SAT

3SAT

PARTITION

KNAPSACK

IP

COLORING

VERTEXCOVER

3DMATCHING

SUDOKU,…



NP-hard and NP-complete problems
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A decision problem is said to be NP-hard if every problem in NP reduces to it via a 
polynomial-time reduction.
(roughly means “harder than all problems in NP.”)

Definition.

A decision problem is said to be NP-complete if

(i) It is NP-hard

(ii) It is in NP.

(roughly means “the hardest problems in NP.”)

Definition.

NP-hardness is shown by a reduction from a problem that’s already known to be NP-hard.

Membership in NP is shown by presenting an easily checkable certificate of the YES 
answer.

NP-hard problems may not be in NP (or may not be known to be in NP as is often the 
case.)

Remarks.



The complexity class NP
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RINCETO

TSP

 MAXCUT

STABLE SET

SAT

3SAT

PARTITION

KNAPSACK

IP

COLORING

VERTEXCOVER

3DMATCHING

SUDOKU,…

NP-complete



The satisfiability problem (SAT)
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Input: A Boolean formula in conjunctive normal form (CNF).

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

SAT  (one of the most fundamental NP-complete problems.)



The satisfiability problem (SAT)
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Input: A Boolean formula in conjunctive normal form (CNF).

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

SAT



3SAT
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Input: A Boolean formula in conjunctive normal form (CNF), where each clause has 
exactly three literals.

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

3SAT

There is a simple reduction from SAT to 3SAT. (See, e.g., [DPV, Chap. 8]).

Hence, since SAT is NP-hard, then so is 3SAT. Moreover, 3SAT is clearly in NP (why?), 
so 3SAT is NP-complete.



Reductions (again)
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A reduction from a decision problem A to a 
decision problem B is  

a “general recipe” (aka an algorithm)
for taking any instance of A and explicitly 
producing an instance of B,  such that

the answer to the instance of A is YES if 
and only if the answer to the produced 
instance of B is YES.
(OK for our purposes also if the YES/NO 
answer gets flipped.)

This enables us to answer A by answering B.

This time we use the reduction for a different purpose:

 If A is known to be hard, then B must also be hard.



The first 21 (official) reductions
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Today we have thousands of 
NP-complete problems. In all 
areas of science and 
engineering.



The value of reductions

40[Garey, Johnson]



Practice with reductions
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I’ll do a few reductions for you:

3SATSTABLE SET (also in [DPV, Chap 8, p. 249])

STABLE SET 0/1 IP (you already know this from lecture 1)

3SATPOLYPOS (degree 6)

In your homework you have to do:

PARTITIONPOLYPOS (degree 4)

STABLE SETCHEAPHOST

More practice: try to prove NP-hardness of problems on the following slides. Read 
[DPV, Chap. 8] for many more.



3SATSTABLE SET
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We show the reduction on an instance only. The pattern should be clear.



STABLE SET  0/1 Integer Programming
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STABLE SET  Feasibility of Quadratic Equations

44



3SATPOLYPOS (degree 6)
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We show the reduction on an instance only. The pattern should be clear.



3SATPOLYPOS (degree 6)
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The knapsack problem
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KNAPSACK



The partition problem
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PARTITION

Note that the YES answer is easily verifiable.

 How would you efficiently verify a NO answer? (no one knows)



Testing polynomial positivity
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A reduction from PARTITION to POLYPOS is on your homework.

POLYPOS

Is there an easy certificate of the NO answer? (the answer is believed to be negative)

Is there an easy certificate of the YES answer? We don’t know; the obvious approach 
doesn’t work:

An aside: Testing convexity of polynomials is also NP-hard! [AOPT13] 



But what about the first NP-complete problem?!!
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The Cook-Levin theorem.

Every problem in NP reduces to
CIRCUIT SAT.

In a way a very deep theorem.

At the same time almost a tautology.

See page 260 of [DPV] for a short
explanation.

CIRCUIT SAT SAT 3SAT (easy reductions; see [DPV]).



The domino effect
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All NP-complete problems reduce to each other!

If you solve one in polynomial time, you solve ALL in polynomial time!



The $1M question!
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• Most people believe the answer is NO!
• Philosophical reason: If a proof of the Goldbach conjecture (or any other longstanding 

open problem in mathematics) were to fly from the sky, we could efficiently verify it. 
But should this imply that we can find this proof efficiently? P=NP would imply that the 
answer is yes.



Nevertheless, there are believers too…
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• Over 100 wrong proofs have appeared so far (in both directions)! See
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm



Main messages…
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Computational complexity theory beautifully classifies many problems of optimization 
theory as easy or hard 

At the most basic level, easy means “in P”, hard means “NP-hard.”

The boundary between the two is very delicate:

MINCUT vs. MAXCUT, PENONPAPER vs. TSP, LP vs. IP, ...

Important: When a problem is shown to be NP-hard, it doesn’t mean that we should 
give up all hope. NP-hard problems arise in applications all the time. There are good 
strategies for dealing with them.

Solving special cases exactly

Heuristics that work well in practice

Using convex optimization to find bounds and near optimal solutions

Approximation algorithms – suboptimal solutions with worst-case guarantees

P=NP?

Maybe one of you guys will tell us one day.



Notes & References
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References:

- [DPV08] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. 
McGraw Hill, 2008.

- [GJ79] D.S. Johnson and M. Garey. Computers and Intractability: a 
guide to the theory of NP-completeness, 1979.

- [BT00] V.D. Blondel and J.N. Tsitsiklis. A survey of computational 
complexity results in systems and control. Automatica, 2000.

- [AOPT13] NP-hardness of testing convexity:
http://web.mit.edu/~a_a_a/Public/Publications/convexity_nphard.
pdf

Notes:

- Relevant reading for this lecture is Chapter 8 of [DPV08].

http://web.mit.edu/~a_a_a/Public/Publications/convexity_nphard.pdf

