
1

A Working Knowledge of
Computational Complexity

for an Optimizer

ORF 363/COS 323

Instructor: Amir Ali Ahmadi

Why computational complexity?

2

What is computational complexity theory?

It’s a branch of mathematics that provides a formal framework for
studying how efficiently one can solve problems on a computer.

This is absolutely crucial to optimization and many other computational sciences.

In optimization, we are constantly looking for algorithms to solve various
problems as fast as possible. So it is of immediate interest to understand the
fundamental limitations of efficient algorithms.

So far in this class we’ve had a rule of thumb for checking if an optimization
problem is “easy”:

See if it’s convex!

But this only scratches the surface. Are all nonconvex problems hard? Are some
of them hard? Are there even convex problems that are hard?

 What does it even mean to be hard?!

Let’s begin by understanding what it means to have a “problem”!

Optimization problems/Decision problems/Search problems

3

(answer to a decision question is just YES or NO)

Optimization problem:

Decision problem:

Search problem:

It turns out that all three problems are equivalent, in the sense that if you could solve
one efficiently, you could also solve the other two. See Ex. 8.1,8.2 of [DPV].

We will focus on decision problems, since it’s a
bit cleaner to develop the theory there.

A “problem” versus a “problem instance”

4

A (decision) problem is a general description of a problem to be answered with
yes or no.

Every decision problem has a finite input that needs to be specified for us to
choose a yes/no answer.

Each such input defines an instance of the problem.

A decision problem has an infinite number of instances.
(Why doesn’t it make sense to study problems with a finite number of instances?)

Different instances of the STABLE SET problem:

(It is common to use capital letters for the name of a decision problem.)

Examples of decision problems

5

LINEQ

An instance of LINEQ:

ZOLINEQ

An instance of ZOLINEQ:

Remark. Input is rational so we can represent it with a finite number of bits. This
is the so-called “bit model of computation”, aka the “Turing model.’’

Examples of decision problems

6

LP

An instance of LP:

(This is equivalent to testing LP feasibility (why?).)

IP

Examples of decision problems

7

MAXFLOW

An instance of MAXFLOW:

Let’s look at a problem we
have seen…

Can you formulate the
decision problem?

Examples of decision problems

8

COLORING

For example, the following graph is
3-colorable.

Graph coloring has important
applications in job scheduling.

We want to understand how fast can all these problems be solved?

Size of an instance

9

To talk about the running time of an algorithm, we need to have a notion of the
“size of the input”.

Of course, an algorithm is allowed to take longer on larger instances.

COLORING STABLE SET

Reasonable candidates for input size:

Number of nodes n

Number of nodes + number of edges
(number of edges can at most be n(n-1)/2)

Number of bits required to store the adjacency
matrix of the graph

Size of an instance

10

In general, can think of input size as the total number of bits required to represent
the input.

For example, consider our LP problem:

LP

Useful notation for referring to running times

11

Polynomial-time and exponential-time algorithms

12

Something you all know: Poly-time: Exp-time:

13

Sissa
(credited for creating
the game of chess)

See page 233 of [DPV]
for the story.

Comparison of running times

14Image credit: [GJ79]

Can Moore’s law come to rescue?

15Image credit: [GJ79]

The complexity class P

16

The class of all decision problems that admit a polynomial-time algorithm.

Example of a problem in P

17

PENONPAPER

Peek ahead: this problem is asking if there is a path that visits every edge exactly once.

If we were to ask for a path that instead visits every node exactly once, we would have
a completely different story in terms of complexity!

How to prove a problem is in P?

18

Develop a poly-time algorithm from scratch! Can be far from trivial (examples below).

Much easier: use a poly-time hammer somebody else has developed. (Reductions!)

An aside: Factoring

19

Despite knowing that PRIMES is in P, it is a major open problem to determine
whether we can factor an integer in polynomial time.

$200,000 prize money by RSA

$100,000 prize money by RSA

The RSA challenge is no longer active (as of 2007), but factoring these numbers
will result in an automatic A+ in this class!

Got some free time over the winter break?

Reductions

20

Many new problems are shown to be in P via a reduction to a problem that is
already known to be in P.

What is a reduction?

Very intuitive idea -- A reduces to B means: “If we could do B, then we could do A.”

Being happy in life reduces to finding a good partner.

Landing a good job reduces to graduating from Princeton.

Getting an A+ in ORF 363 reduces to factoring RSA-2048.

…

Well-known joke - mathematician versus engineer boiling water:

Day 1:

Day 2:

Reductions

21

A reduction from a decision problem A to a
decision problem B is

a “general recipe” (aka an algorithm)
for taking any instance of A and explicitly
producing an instance of B, such that

the answer to the instance of A is YES if
and only if the answer to the produced
instance of B is YES.
(OK for our purposes also if the YES/NO
answer gets flipped.)

This enables us to answer A by answering B.

MAXFLOW→LP

22

MAXFLOW

LP

Poly-time
reduction
(shown on one instance)

Polynomial time reductions

23

In your HW problem you need to argue that a certain problem about scheduling
appointments is in P by giving a reduction. Don’t forget to argue that the length of
the reduction is polynomial.

MINCUT

24

MINCUT

Is MINCUT in P?

Yes! We’ll reduce it to LP.

MIN S-T CUT

25

MIN S-T CUT

Strong duality of linear programming implies
the minimum S-T cut of a graph is exactly equal
to the maximum flow that can be sent from S
to T.

Hence, MIN S-T CUTMAXFLOW

We have already seen that
MAXFLOW LP.

But what about MINCUT? (without
designated S and T)

(that leaves S on one side and T on the other)

MINCUTMIN S-T CUT

26

Pick a node (say, node A)

Compute MIN S-T CUT from A to every other
node

Compute MIN S-T CUT from every other
node to A

Take the minimum over all these 2(|V|-1)
numbers

That’s your MINCUT!

The reduction is polynomial in length.

Overall reduction

27

We have shown the following:

MINCUTMIN S-T CUTMAXFLOWLP

Polynomial time reductions compose (why?):

MINCUTLP

Unfortunately, we are not so lucky with all
decision problems…

Now comes the bad stuff…

MAXCUT

28

MAXCUT

Examples with edge
costs equal to 1:

To date, no one has come up with a polynomial time algorithm for MAXCUT.

We want to understand why that is…

Cut value=8

Cut value=23
(optimal)

The traveling salesman problem (TSP)

29

Again, nobody knows how to solve this efficiently (over all instances).

Note the sharp contrast with PENONPAPER.

Amazingly, MAXCUT and TSP are in a precise sense “equivalent”: there is a
polynomial time reduction between them in either direction.

TSP

TSP

30Reference: http://www.math.uwaterloo.ca/tsp

The complexity class NP

31

A decision problem belongs to the class NP (Nondeterministic Polynomial
time) if “the YES answer to any instance is easily verifiable.”

 More precisely, every YES instance has a “certificate” of its correctness
that can be verified in polynomial time.

Examples: TSP, MAXCUT, PENONPAPER….what’s the certificate in each case?

The complexity class NP

32

RINCETO

TSP

 MAXCUT

STABLE SET

SAT

3SAT

PARTITION

KNAPSACK

IP

COLORING

VERTEXCOVER

3DMATCHING

SUDOKU,…

NP-hard and NP-complete problems

33

A decision problem is said to be NP-hard if every problem in NP reduces to it via a
polynomial-time reduction.
(roughly means “harder than all problems in NP.”)

Definition.

A decision problem is said to be NP-complete if

(i) It is NP-hard

(ii) It is in NP.

(roughly means “the hardest problems in NP.”)

Definition.

NP-hardness is shown by a reduction from a problem that’s already known to be NP-hard.

Membership in NP is shown by presenting an easily checkable certificate of the YES
answer.

NP-hard problems may not be in NP (or may not be known to be in NP as is often the
case.)

Remarks.

The complexity class NP

34

RINCETO

TSP

 MAXCUT

STABLE SET

SAT

3SAT

PARTITION

KNAPSACK

IP

COLORING

VERTEXCOVER

3DMATCHING

SUDOKU,…

NP-complete

The satisfiability problem (SAT)

35

Input: A Boolean formula in conjunctive normal form (CNF).

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

SAT (one of the most fundamental NP-complete problems.)

The satisfiability problem (SAT)

36

Input: A Boolean formula in conjunctive normal form (CNF).

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

SAT

3SAT

37

Input: A Boolean formula in conjunctive normal form (CNF), where each clause has
exactly three literals.

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

3SAT

There is a simple reduction from SAT to 3SAT. (See, e.g., [DPV, Chap. 8]).

Hence, since SAT is NP-hard, then so is 3SAT. Moreover, 3SAT is clearly in NP (why?),
so 3SAT is NP-complete.

Reductions (again)

38

A reduction from a decision problem A to a
decision problem B is

a “general recipe” (aka an algorithm)
for taking any instance of A and explicitly
producing an instance of B, such that

the answer to the instance of A is YES if
and only if the answer to the produced
instance of B is YES.
(OK for our purposes also if the YES/NO
answer gets flipped.)

This enables us to answer A by answering B.

This time we use the reduction for a different purpose:

 If A is known to be hard, then B must also be hard.

The first 21 (official) reductions

39

Today we have thousands of
NP-complete problems. In all
areas of science and
engineering.

The value of reductions

40[Garey, Johnson]

Practice with reductions

41

I’ll do a few reductions for you:

3SATSTABLE SET (also in [DPV, Chap 8, p. 249])

STABLE SET 0/1 IP (you already know this from lecture 1)

3SATPOLYPOS (degree 6)

In your homework you have to do:

PARTITIONPOLYPOS (degree 4)

STABLE SETCHEAPHOST

More practice: try to prove NP-hardness of problems on the following slides. Read
[DPV, Chap. 8] for many more.

3SATSTABLE SET

42

We show the reduction on an instance only. The pattern should be clear.

STABLE SET  0/1 Integer Programming

43

STABLE SET  Feasibility of Quadratic Equations

44

3SATPOLYPOS (degree 6)

45

We show the reduction on an instance only. The pattern should be clear.

3SATPOLYPOS (degree 6)

46

The knapsack problem

47

KNAPSACK

The partition problem

48

PARTITION

Note that the YES answer is easily verifiable.

 How would you efficiently verify a NO answer? (no one knows)

Testing polynomial positivity

49

A reduction from PARTITION to POLYPOS is on your homework.

POLYPOS

Is there an easy certificate of the NO answer? (the answer is believed to be negative)

Is there an easy certificate of the YES answer? We don’t know; the obvious approach
doesn’t work:

An aside: Testing convexity of polynomials is also NP-hard! [AOPT13]

But what about the first NP-complete problem?!!

50

The Cook-Levin theorem.

Every problem in NP reduces to
CIRCUIT SAT.

In a way a very deep theorem.

At the same time almost a tautology.

See page 260 of [DPV] for a short
explanation.

CIRCUIT SAT SAT 3SAT (easy reductions; see [DPV]).

The domino effect

51

All NP-complete problems reduce to each other!

If you solve one in polynomial time, you solve ALL in polynomial time!

The $1M question!

52

• Most people believe the answer is NO!
• Philosophical reason: If a proof of the Goldbach conjecture (or any other longstanding

open problem in mathematics) were to fly from the sky, we could efficiently verify it.
But should this imply that we can find this proof efficiently? P=NP would imply that the
answer is yes.

Nevertheless, there are believers too…

53

• Over 100 wrong proofs have appeared so far (in both directions)! See
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Main messages…

54

Computational complexity theory beautifully classifies many problems of optimization
theory as easy or hard

At the most basic level, easy means “in P”, hard means “NP-hard.”

The boundary between the two is very delicate:

MINCUT vs. MAXCUT, PENONPAPER vs. TSP, LP vs. IP, ...

Important: When a problem is shown to be NP-hard, it doesn’t mean that we should
give up all hope. NP-hard problems arise in applications all the time. There are good
strategies for dealing with them.

Solving special cases exactly

Heuristics that work well in practice

Using convex optimization to find bounds and near optimal solutions

Approximation algorithms – suboptimal solutions with worst-case guarantees

P=NP?

Maybe one of you guys will tell us one day.

Notes & References

55

References:

- [DPV08] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms.
McGraw Hill, 2008.

- [GJ79] D.S. Johnson and M. Garey. Computers and Intractability: a
guide to the theory of NP-completeness, 1979.

- [BT00] V.D. Blondel and J.N. Tsitsiklis. A survey of computational
complexity results in systems and control. Automatica, 2000.

- [AOPT13] NP-hardness of testing convexity:
http://web.mit.edu/~a_a_a/Public/Publications/convexity_nphard.
pdf

Notes:

- Relevant reading for this lecture is Chapter 8 of [DPV08].

http://web.mit.edu/~a_a_a/Public/Publications/convexity_nphard.pdf

