
Optimization problems - basic notation and terminology•

The Fermat-Weber problem○

Least squares○

Unconstrained optimization•

First and second order necessary conditions for optimality•
Second order sufficient condition for optimality•
Solution to least squares•

This lecture:

Short for minimize

Short for subject to

Objective function

Constraint set (or feasible set)

In this class (unless otherwise stated), we have:

An optimization problem in general (or abstract) form:•

Decision variables

Typically, some description of       and       is given as input to us.

Optimal solution      :             

(also called the "solution" or the "global solution")

A point that minimizes     over    

May not exist.
May not be unique.

-

Instructor: 
Amir Ali Ahmadi
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x* exists and is unique. x* does not exist.

x* exists, but not unique. x* does not exist.

Optimal value: (if x* exists)

See the lower right picture above.•
In such a scenario, the term "minimum" is often replaced by "infimum". •

But can be well-defined even if x* doesn't exist.

   continuous and      compact (i.e., closed and bounded).○

An important case where x* is guaranteed to exist:•

This is known as the Weierstrass theorem.•

Just multiply f by a minus sign:○

What if we want to maximize an objective function instead?•

Optimal solution doesn't change.
Optimal value only changes sign.

Problem is "unbounded."
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Unconstrained optimization:

Decision variables are not constrained at all. The goal is only to 
minimize the objective function.

Example 1: The Fermat-Weber problem.

You have a list of loved ones who live in given 
locations in the US. You would like to decide 
where to live so you are as close to them all as 
possible; say, you want to minimize the sum of 
distances to each person.

mom•
grandma•

lover 1•

cousin 1•

lover 2•best friend•

sister•

dad•

Cousin 3•
brother•

you?

Fermat
(1607-1665)

Weber
(1868-1958)

Location of person i:

Your location:

Variant: also given weights wi for each person
(your mom says you should care more about her than lover 1)

•

Many other applications: e.g., Princeton is deciding on the location 
of a new gym and wants to minimize distance to dormitories, giving 
priority to undergrads,…

•
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Example 2: Least squares.

As we'll see later, this optimization problem is "easy" to solve, not 
because it is unconstrained (as there are many terribly hard 
unconstrained problems!), but because it has a nice structure 
(called convexity).

•

If at the same time you wanted to be "far" from some subset of 
your friends and family, this would have been a very hard problem 
to solve!

•

Optimization theory is full of instances where a tiny variation in the 
problem formulation changes the problem completely from being 
very easy to solve to being very hard to solve. It takes a trained eye 
to detect this. By the end of the course, you will learn techniques 
that will help you make such distinctions.

•

But we are getting way ahead of ourselves. For one thing, we 
haven't even formalized what it means for an optimization problem 
to be "easy" or "hard". Let's forget this for now and move on to 
another unconstrained optimization problem---one of the most 
widely-encountered in science and engineering.

•

Gauss
(1777-1855)

Legendre
(1752-1833)Given: mxn matrix

mx1 vector

Solve:

By default, ||.|| always represents the 2-norm; i.e., ||.||2 .

In expanded notation, we are solving:
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Some applications of least squares:

Data fitting.

Given:

Fit a (say, cubic) polynomial:

Quick notation exercise: convince yourself that this is a least squares 
problem.

Overdetermined  system of linear equations.

A simple linear predictor for the stock price of a company:

Stock price at day t

We have three months of daily stock price data to train our model (lots of 
5-day windows). How to find the best         for future prediction?

 and  are given from data.
( would be 90.)
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Optimality conditions

Unconstrained local and global minima.

Consider a function

A point        is said to be a:

Local minimum:

Strict local minimum:

Global minimum:

Strict global minimum:

Strict global min

Local/global maxima defined analogously.•
A (strict) global minimum is of course also a (strict) local minimum.•

Local min

Strict local min

Local max and 
local min

Strict local max

No global max in this case. Problem is unbounded above.
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In general, finding local minima is a less ambitious goal than finding 
global minima.

•

Luckily, there are important problems where we can find global 
minima efficiently.

•

On the other hand, there are problems where finding even a local 
minimum is intractable.

•

These statements should become more concrete as the course 
progresses.

•

First and second order conditions for local optimality

The gradient vector•
The chain rule•
The Hessian matrix•
Taylor series approximation•

Optimality conditions are results that give us some structural 
information about the properties of optimal solutions. To understand 
the proofs that follow, make sure you are comfortable with the 
following notions:

See lecture notes of the previous lecture or Sections 5.3-5.6 of [CZ13].

Notation reminder:

The gradient vector (nx1 vector)

The Hessian matrix (nxn symmetric matrix)
Notation of [CZ13]:
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Theorem. (First Order Necessary Condition for (Local) Optimality)
If        is an unconstrained local minimizer of a  differentiable 
function                    , then we must have:

Proof.

Fermat 
(1607-1665)
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This condition is necessary but not sufficient for local 
optimality.

•

Nevertheless, it is useful because any local minimum must 
satisfy this condition. So, we can look for local (or global) 
minima only among points that make the gradient of the 
objective function vanish.

•

We will see later that in presence of an important concept 
called convexity, this condition is in fact sufficient for local 
(and global!) optimality.

•

Terminology: A point  that satisfies        is called a 
stationary point or a critical point of   

•

Remarks:

Second order conditions.

The statements of our second order optimality conditions involve the 
notions of psd and pd matrices. Let's recap these concepts.

Linear algebra interlude.  
(See the last lecture if you need more review.)

Symmetric matrix:

Theorem. Eigenvalues of a real symmetric matrix are real.

Proof. See, e.g., Theorem 3.2 in Section 3.2 of [CZ13].

(AT denotes the transpose of A. )

symmetric      not symmetric

Positive semidefinite (psd) if:•

Positive definite (pd) if:•

A square matrix A is said to be:

Notation:

Lec3p9, ORF363/COS323

   Lec3 Page 9    



Recall that when we talk of positive semidefiniteness (or 
positive definiteness), we assume with no loss of generality 
that our matrix is symmetric: If A was not symmetric, we 
could take its "symmetric part".

Theorem. A matrix is positive semidefinite if and only if all its 
eigenvalues are nonnegative. A matrix is positive definite if and only if 
all its eigenvalues are positive.

Proof. See, e.g., Theorem 3.7 in Section 3.4 of [CZ13].

Examples:
MATLAB: eig([2 4;4 5])

Recall our easy test in dimension 2:

This generalizes to n dimensions using the concepts of principal minors 
and leading principal minors; see Section 3.4 of [CZ13].
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Theorem. (Second Order Necessary Condition for (Local) Optimality)
If        is an unconstrained local minimizer of a  twice  continuously            
differentiable function                    , then, in addition to               , we 
must have:

Proof.

(i.e., the Hessian at       is positive semidefinite.)

"Little o" notation: see [CZ13], Section 5.6 or our previous lecture.
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Theorem. (Second Order Sufficient Condition for (Local) Optimality)

Proof.

(i.e., the Hessian at       is positive definite), then        is a strict local 
minimum of          

Suppose                       is twice continuously  differentiable,                     , and
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                                             is not sufficient for local optimality.•
Remarks.

                is not necessary for (even strict global) optimality.•

How would we use all these optimality conditions to find local 
solutions and certify their optimality?

•

Is it easy to find points satisfying these conditions? e.g., is it easy to 
solve

•

Suppose you certified that a given point is locally optimal, how 
would you go about checking if it is also globally optimal?

•

Questions to keep in the back of your mind:

   

Exercise.  State (and prove) the analogues of our three theorems for 
local maxima.

Now that we have a better understanding of the structure of optimal 
solutions for unconstrained optimization problems, let's revisit our least 
squares problem…
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Least squares, revisited.

Given:    matrix

   vector

Solve:

(Assume columns of  are 
linearly independent)
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Exercise with optimality conditions

Find all the local minima and maxima of the following function:   
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Optimality conditions are covered in Chapter 6 of [CZ13] in a more general 
setting where one also has a general constraint      The unconstrained 
optimality conditions that we presented here are stated in Chapter 6 as 
corollaries (called the "interior case"). You are only responsible for what was 
covered in class.

•

Least squares is covered in Section 12.1 of [CZ13]. But again, this is for 
further reading and my notes should have everything that I expect you to 
know.

•

Notes:
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