
Nonnegative weighted sum○

Pointwise maximum○

Composition with  an affine mapping○

Restriction to a line○

Operations that preserve convexity•

Least absolute shrinkage and selection operator 
(LASSO ); aka least squares with   penalty

○

Support vector machines (SVMs)

Supervised learning○

Applications of convex optimization to statistics and 
machine learning

•

This lecture: Instructor: 
Amir Ali Ahmadi

Rule 1: Nonnegative weighted sums

If        are convex functions and          , then

                      

is convex also. Similarly, a nonnegative weighted sum of concave functions is 
concave.

Operations that preserve convexity

In the previous lecture, we covered some of the reasons why convex 
optimization problems are so desirable in the field of optimization. We 
also gave some characterizations of convex functions that made it easier 
to recognize convex problems.

•

Nevertheless, since testing convexity can in general be an intractable task 
[AOPT13], it is useful to produce as many convex functions as we can 
from a ground set of functions that we already know are convex.

•

This is exactly what "convexity-preserving rules" do: They take some 
convex functions as input and perform certain operations to produce 
more convex function. Often, the new convex functions turn out to have a 
much richer class of applications.

•

There is a long list of convexity-preserving rules [BV04]. We present only 
four of them here. The software CVX that you are using has a lot of these 
rules built in [BG08], [CVX11].

•
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Proof: Let        be convex functions,                                    

                                              

                                                

                                                
                   

where the second line is obtained using convexity of         and the fact that the 
inequalities are preserved as        are nonnegative.     

If    and  is convex, then   is convex.○

If   and   are convex, then      is convex.○

Note that this in particular implies:•

Also easy to prove the theorem from the second order characterization of 
convexity (assuming differentiability). Do you see how the proof would work?

•

Convex function  Concave function.○

Since the sum of two convex functions is convex,  a constraint of the following 
form is a valid CVX constraint (why?):

•

Rule 2: Composition with an affine mapping

Suppose                  and      Define          by

            

with                        Then, if   is convex, so is  ; if  is concave,
so is  . 

The proof is given on the following page.

is      convex?○

is      convex?○

is 
  

  
  convex?○

Q: If      are convex functions,•
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Proof: Let        and          Then: 

                              
                                                               

                                                           

                                                        using the fact that  is convex 
                                                    
So g is convex. The proof in the concave case is similar.

Rule 3: Pointwise maximum

If   ,     are convex functions then their pointwise maximum

                             

with                                      , is also convex.

Example. 
The following function is immediately seen to be convex. (Without knowing 
the rule above, it would be much harder to prove convexity.)
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Example - the hinge loss

The hinge loss function                 is convex.

Proof:

    

                         

One can similarly show that the pointwise minimum of two concave 
functions is concave.

•

But the pointwise minimum of two convex functions may not be convex.•
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Rule 4: Restriction to a line

Let       be a convex function and fix some         Then, the function 
      given by             is convex. 

Proof: This directly follows from Rule 2 (composition with an affine 
mapping). Indeed,     is an affine expression in  since  and  are fixed. 
Here is a second independent proof:

Image credit: [She94]

            

Many of the algorithms we will see in future lectures work by 
iteratively minimizing a function over lines. It's useful to remember 
that the restriction of a convex function to a line remains convex. 
Hence, in each subproblem where we are faced with a univariate 
minimization problem, we can just set the derivative equal to zero and 
be sure that that produces a global minimum.

•

Restriction to a line geometrically:
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Some applications of convex optimization in statistics and 
machine learning

Personalized pricing of flight tickets 

You have been hired as a quantitative analyst by Priceline.com, a major travel 
website company. A distinguishing feature of the company is its "Name Your 
Own Price" tool, a mechanism for customers to bid on the price they want to pay 
for a flight ticket. If the bid is high enough, the ticket is sold. If it's too low, the 
company displays a rejection message with a counteroffer. You have been hired 
to optimize this pricing strategy. (After all, an A on a course called "Computing 
and Optimization" from Princeton makes your boss think you can optimize 
anything!) Faced with this task, you want an efficient mechanism for predicting 
the highest price a given customer is willing to pay for a flight. 

Their age•
The number of friends they have on Facebook•
The place where they currently live       •
How frequently they travel•
The size of their household•
Their average monthly salary                                              •
Their initial bid
(assuming they used the Name Your Own Price tool)

•

Gender•
Marital status•
Average time spent on the internet•
How many times they searched for the same flight•
Their favorite movie•
…•

As usual in the age of big data and no privacy, your boss gives you a massive data 
set containing information about past customers:

 different 
attributes
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For every customer in your data set you also get to see how much they 
actually ended up paying for the ticket.  This could be with the Name 
Your Own Price tool, or just using the regular travel tool of Priceline or 
other competitor websites.

So overall, you have access to    vectors in   :

   
 

  
 

  
 

 
  

 

 
    

 

  
 

  
 

 
  

 

 
      

 

  
 

  
 

 
  

 

 
   

 

  

  

 
  

 
 

                                              
where the vector   summarizes the  -th attribute of all customors (e.g.,   can 
have all the ages), and the vector  contains the prices that different 
individuals paid.

You would like to find a simple relationship between  and the attiributes 
    For each customers   you believe that:

  
                                    

i.e.,    
          

 
       

 
       

 
   , where                  

In vector notation,            
 
                  

 
      

The natural optimization problem to solve to find the best coefficients 
(  ) is then:

•

                                                    
 

           

 

   

 

 

          

This is a convex optimization problem. Which rule would you use to see this?
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You also feel that many of the  attributes you were given are irrelevant. 
So you want to find a solution where many of the   's are zero; i.e., the 
behavior of the customors is explained by a few attributes only.

•

Ideally, you would add a constraint of the type        is large. 
Unfortunately, this constraint is not convex and not an easy one to deal 
with computationally.

•

Instead, a common approach taken in practice is to make

                                                         

as small as possible. This encourages many components of  to be zero or 
close to zero. You can threshold the ones that are very small down to zero.

•

Your new optimization problem then becomes:

                                                 
 

           

 

   

 

 

         

where  is some positive constant picked by you. This is again a convex 
optimization problem. To see this, we are using Rule 1 and Rule 2. Do you 
agree?

Note that:

If  is big, then more effort goes into minimizing the second term.•
If  is small, then more effort goes into minimizing the first term. •
Making the first term small makes the error in the prediction of the model 
on past customers small.

•

This can help with making better predictions for future customers by 
avoiding overfitting.

○

Making the second term small ensures that we don't use too many 
attributes in our predictor.

•

In statistics,  the solution of this optimization problem is called the LASSO
estimator.
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Solving the problem with CVX

       (# of past customers)○

     (# of attributes of each customer)○

 : varying between 0.1 and 2○

We solve an instance of this problem with CVX with•

clear all
n=10000;
p=100;

error_vec=[];
nnzeros=[];
X=[ones(n,1) rand(n,p)];
y=5*rand(n,1);
for gamma=.1:.1:2

variable b(p+1)
minimize (norm(y-X*b,2)+gamma*norm(b,1))

cvx_begin

cvx_end
error_vec=[error_vec;norm(y-X*b,2)];
nnzeros=[nnzeros; length(find(abs(b)>.01))];
end
plot(.1:.1:2, error_vec,'*')
figure, plot(.1:.1:2, nnzeros,'ro')

Run time is a few seconds (even 
on my tablet)!

•

Once we choose a  we like, we 
keep the vector   (the ouput of 
the optimization problem) as our 
predictor.

•

When a new costumer comes in 
with a new set of attributes 
         we simply predict the 

price he is willing to pay to be

•

  
    

    
     

    
      

   
  

So the optimization problem is 
solved offline and only once. The 
computation done online at the 
time of prediction is simply 
taking a simple vector inner 
product.

•

A good technique for choosing  is cross validation.
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Application II: Support Vector Machines (SVMs) 

An example of supervised learning: we would like to learn a classifier 
from a labeled data set (called the training set).

•

The classifier is then used to label future data points.•

Given a large number of emails with correct labels "spam" or "not 
spam", we would like an algorithm for classifying future emails as 
spam or not spam.

○

The emails for which we already have the labels constitute the 
"training set".

○

Classic example is an email spam filter:•

Example:

Hello class,

My office hours this week have 
moved to Thursday, 4-5:30 PM. 
Lecture 4 is now up on the course 
website.

-Amirali

Not spam

Good day,

My name is Chaghal. I seek 
true soulmate. Are you ready 
for relations? Check my 
profile here:

http://soul4.com/me.exe

Spam

Hey man,

I'm tired of this homework for 
ORF 363. Let's go party tonight. 
We can always ask for an 
extension.

-J

Spam

How many words are in the email?○

How many misspelled words?○

How many links?○

Is there a $ sign?○

Does the word "bank account" appear?○

Is the sender's email client trustworthy?○

 ○

A basic approach is to associate a pair        to each email;   is the label, 
which is either  (spam) or   (not spam). The vector      is called a 
feature vector; it collects some relevant information about email  . For 
example:

•
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If we have   emails, we end up with  vectors in     each 
with a label    Here is a toy example in    

•

     

     

The goal is now to find a classifier       , which takes a positive value 
on spam emails and a negative value on non-spam emails.

•

The zero level set of  serves as a classifier for future predictions.•

We can search for many classes of functions as classifiers using convex 
optimization.

•

The simplest one is linear classification:        •
Need to find         that satisfy•

                                                             if     
                                                             if      

                                 

This is a convex feasibility problem (in fact a set of linear inequalities). It 
may or may not be feasible (compare examples above and below). Can you 
identify the condition for feasibility of linear classification?

•

This is equivalent (why?) to finding          that satisfy:•
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There could be many linear classifiers. Which one do we choose?•

   
   

       

              s.t.      
                 

This is a convex program (why?)•
Optimal solution is unique (why?)•
What is this optimization problem doing?•

An example of linearly 
separable data

Claim 1: The optimization problem above is equivalent to:

   
     

   

              s.t.      
                 

                                   

Claim 2: An optimal solution of the latter problem always satisfies                                                      

(1)

(2)

Claim 3: The Euclidean distance of a point     to a hyperplane      is 
given by

                                                                       
       

     
       

Consider:•
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Let's believe these three claims for the moment. What optimization 
problem (1) is then doing is finding a hyperplane that maximizes the 
minimum distance between the hyperplane (our classifier) and any of 
our data points. Do you see why?

•

We are trying to buy ourselves as much margin as possible.•
This helps us be robust to noise, in case the feature vector of our future 
data points happen to be slightly misspecified. 

•

margin

       

Shaded data points are called 
support vectors

Claim 1: how would you get feasible solutions to one from the other?○

Claim 2: how would you improve the objective if it didn't?○

Claim 3: good exercise of our optimality conditions○

Hints:•

Proof of the three claims: on your homework exercises! (I removed claim 3 
from HW)
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What if the points are not linearly separable?•

Let's try to minimize the number of points misclassified:•

   
     

        

s.t.      
                   

                     

It is commonly called "the   norm", but it is not really a norm (why? 
Which property of the norm is failing?). 

○

     
 

denotes the number of nonzero elements of   •

If      data point  is correctly classified.•

Unfortunately, it is a hard problem to solve.○

Which entries to set to zero? Many different subsets to consider. ○

As a powerful heuristic for this problem, people solve the following:○

The optimization problem above is trying to set as many entries of  to 
zero as possible.

•

   
     

        

s.t.      
                   

                     

This is a convex program (why?). We can solve it efficiently.•
The solution with minimum   norm tends to be sparse; i.e., have many 
entries that are zero. (There are theoretical justifications for this, beyond 
the scope of this class.)

•

Note that when       data point   is still correctly classified, but it falls 
within our "margin"; hence not robustly classified.

•

When       data point  is misclassified.•
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s.t.      
                   

                     

We can solve a modified optimization problem to balance the tradeoff 
between the number of misclassified points and the width of our margin.

•

   is a parameter that we fix a priori.•
Larger  means we assign more importance to reducing number of 
misclassified points.

•

The length of our margin is  
 

     
    counting both sides (why?).○

Smaller  means we assign more importance to having a large margin.•

For each   the problem is a convex program (why?).•
On your homework, you will run some numerical experiments on this 
problem.

•
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Much more on convexity-preserving rules can be found in Section 3.2 of 
[BV04].

•

You can read more about support vector machines in Section 8.6 of [BV04].•
The original LASSO paper is [Tibs96].•

Notes:
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