
One-dimensional line search (root 
finding and minimization)

•

Bisection•

Newton's method•

Secant method•

Introduction to rates of 
convergence

•

This lecture:

Instructor: 
Amir Ali Ahmadi

One-dimensional line search will be used as a subroutine in future 
lectures for multivariate optimization.

○

Some algorithms that we see here (e.g., Newton's method) will 
directly generalize to several dimensions.

○

Some of the difficulties for multivariate optimization already appear 
in dimension 1 (e.g., lack of global convergence).

○

A univariate optimization problem has pretty limited use, but:•
In this lecture, we'll see iterative methods for minimizing a function       

But what does "plotting" mean? It means  evaluating the function at 
many, many point.

•

Ideally, we would like to minimize the number of function evaluations.•

Of course, if the problem is 1-D, you can just plot the function and "look at it" 
to find the global minimum!

Bisection (uses    •
Newton's method (uses   and     •
Secant method (uses    •

We will see three algorithms:
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Bisection

Have you ever looked for a book in 
a library?

•

Or searched for a word in the 
dictionary?

•

If you have, then you already know 
bisection!

•

     is continuously differentiable. •
We know (a possibly large) interval 
       where its minimum lives.

•

The derivative of  changes sign only 
once on         . Further, assume there is 
only one local minimum in the interval.

•

Suppose

Derivative changing 
sign once

Derivative changing 
sign more than 
once

Here is the bisection algorithm:

for        

    if    
     

 
        

        you are done;

    elseif    
     

 
        

               ;
                      ;

    else (if    
     

 
      <0)

               ;
                      ;
    end
end
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In each iteration the length of the interval where the 
minimum lies is cut in half; i.e.

                                           
 

 
        

•

Suppose we are happy if we isolate the minimum within an 
interval of length   How many steps should we take?

•

                                          
       

 
      

(verify this)

In fact, that's what the algorithm is doing on   ○

If   is continuous, then bisection will find (a) root○

In each step the root is sandwiched between our new 
endpoints

○

We can also use bisection for root finding•

But not as fast as the next two algorithms we'll see○

Since our intervals are halving in every step, bisection 
has "linear convergence" (notion formalized later)

○

Essentially, in each iteration, we get one more correct 
significant digit of the root

○

Bisection is a safe and robust algorithm•

Remarks on bisection:

To find a bracket containing minimizer, it suffices to find 3 points
     such that          and          

•

In many applications, we know a priori an initial interval          But what if we 
don't? The following strategy can do the job (assuming       as      ).
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A common use of bisection in optimization

Consider an optimization problem: 

        
s.t.          

Suppose we have a black box that can test for feasibility - it tells us 
whether the set             is empty or not.

•

How can use the black box to solve our optimization problem?•
Note that our problem is equivalent to the following:•

       
    

     
s.t.                 

If feasible, decrease   ○

If infeasible, increase   ○

So we can do bisection on   For each fixed   call the feasibility black box 
on the set                 .

•

If we know an interval of length  where   lies, we can get 
   with accuracy  if we call our feasibility black box        
times.

•

Hence (in many cases) an efficient algorithm for feasibility 
testing directly gives an efficient algorithm for optimization.

•
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Newton's method

Newton
(1642-1727)

Raphson
(1648-1715?)

Could not find 
his picture

Suppose now that we have access to   and 
     Newton's method (aka the Newton-
Raphson method) for minimization is based 
on the following iterations:

        
      

       
      

Local quadratic approximation of  •
Solving the equation        by the so-called 
"method of tangents"

•

We present two different motivations for deriving this 
iterative algorithm:

Local quadratic approximation

Idea: Let's approximate  locally by a simpler function that we know how to 
minimize; say, a quadratic function  . If   is quadratic itself, then our 
approximation is globally correct and we terminate in one step. If it isn't, we 
move to the minimum of  and re-approximate  again at that point with a 
new quadratic.

Want to approximate  at a point   with a quadratic function:

             

We want to match:            
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Let's plug in the values of      that we found:•

                        
 

 
                

Do you recognize this? This is just the second order Taylor expansion of  
around    Not surprising.

•

Assuming     the minimum of the quadratic is finite and is 

achived at  
 

  
   This minimum is the new point we want to jump 

to:

•

      
 

  
     

                

       
                    

      

       
       

This is exactly what the Newton method told us to do.

Solving        

If you saw Newton's method in high school, it was probably to solve 
equations (find roots), not to minimize functions.

•

But it is the same thing; we are in effect finding the roots of   hoping that 
they are local minima of     Let            

•

"method of tangents"

At     we approximate  with a line; the zero of the 
line is our next point. Let's find the equation of the 
line:

This is exactly what the Newton method told us to do.
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Good things can happen with Newton's method

Let's see how the Newton and the 
bisection method compare on a toy 
problem: Find a root of            

Answer is obviously: 
>> 10^(1/3)

ans =

   2.154434690031884

We run Newton with       bisection wih                •

Bisection

Newton 

Circled in red: correct significant digits

The convergence of Newton's method is much faster than bisection•
Number of correct digits doubles in each iteration (when the iterates are 
close enough to the root)

•

We'll see more about this in upcoming lectures○

This is an implication of "quadratic convergence"•
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Bad things can happen with Newton's method

(Remark on notation: when you see   the goal is to minimze; when you see  , 
the goal is to find a root.)

Convergence is sensitive to our starting point•

Moved in the wrong direction.

Iterations diverge.

Convergence can get slow if 
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Bad things can happen with Newton's method

Convergence of Newton's method can be extremely sensitive on initial 
conditions. In the example below, we are trying to find the roots of a 
simple polynomial defined on the complex plane. There are arbitrarily 
close initial conditions whose Newton iterations converge to completely 
different roots.

         

Roots of  

"Newton's fractal"

Each point   of the complex plane is colored with one of five colors, 
depending on which root of the function  the Newton iterations 
converge to if we start them off from the initial point   

Image credit: N. Buroojy
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The secant method

Recall the Newton iterations for minimizing a function:

        
      

       
      

The secant method is a very simple modification of the Newton's method, 
where we assume that we don't have access to    , and instead approximate it 
with   using finite differencing: 

        
                

       
                

After substitution, we get:

        
       

               
                     

Note: we need two points to initialize this algorithm.•

Or, equivalently:

     
                     

               
                     

Simply replace   with   ○

Similarly, we can write a secant algorithm for root finding:        •

        
       

             
                        

                   

             
                    

Geometric interpretation: 
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The secant method in action

Let's go back to our toy example:
Find a root of            

Answer is obviously: 
>> 10^(1/3)

ans =

   2.154434690031884

How does the secant method compare with Newton and bisection?•
We run Newton with       bisection wih                 secant 
with                 

•

Bisection

Newton 

Circled in red: correct significant digits

Secant

Secant with 
more iterations

# of correct digits:
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Set of linear equations? Can be done efficiently. [poly-time]•
Set of quadratic equations? Can be done in finite time, but no efficient 
algorithm known (and unlikely to exist). [NP-hard]

•

A single degree-4 equation? Same as above (why?). [NP-hard]•

Finding real roots in many dimensions

Here is a summary of the state of affairs for those who are interested. We'll 
prove some of these statements later in the course. Some others are quite 
involved and well beyond the scope of this class. (Note: everything on this 
page is optional reading; I am aware that I have not defined terms like "NP-
hardness" yet. We will do this in a few weeks and you can revisit this page.)

Set of linear equations? Can be done efficiently. [poly-time]•
Set of quadratic equations? Not possible in finite time! [Undecidable]•
A single degree-4 equation? Same as above (why?).•
Google, e.g., Hilbert's 10th problem.•

Finding integer roots in many dimensions

Set of linear equations? Can be done efficiently. [poly-time]•
Set of quadratic equations? We actually currently don't know if it can be 
done in finite time!

•

Finding rational roots in many dimensions

Can only get harder•
But interestingly, the linear case over the reals can still be done efficiently
(this is called linear programming!)

•

Finding an integer solution to a system of linear inequalities is however 
NP-hard. 

•

What about solving systems of inequalities?

Let's finish by mentioning that designing algorithms for root finding (in many 
dimensions) is a central area of research in computational mathematics. Many 
fundamental results of the area have only appeared in the past century.
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Chapter 7 of [CZ13] also covers root finding and line search in one dimension.•

Notes:
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