
One-dimensional line search (root
finding and minimization)

•

Bisection•

Newton's method•

Secant method•

Introduction to rates of
convergence

•

This lecture:

Instructor:
Amir Ali Ahmadi

One-dimensional line search will be used as a subroutine in future
lectures for multivariate optimization.

○

Some algorithms that we see here (e.g., Newton's method) will
directly generalize to several dimensions.

○

Some of the difficulties for multivariate optimization already appear
in dimension 1 (e.g., lack of global convergence).

○

A univariate optimization problem has pretty limited use, but:•
In this lecture, we'll see iterative methods for minimizing a function

But what does "plotting" mean? It means evaluating the function at
many, many point.

•

Ideally, we would like to minimize the number of function evaluations.•

Of course, if the problem is 1-D, you can just plot the function and "look at it"
to find the global minimum!

Bisection (uses •
Newton's method (uses and •
Secant method (uses •

We will see three algorithms:

Lec7p1, ORF363/COS323

 Lec7 Page 1

Bisection

Have you ever looked for a book in
a library?

•

Or searched for a word in the
dictionary?

•

If you have, then you already know
bisection!

•

 is continuously differentiable. •
We know (a possibly large) interval
 where its minimum lives.

•

The derivative of changes sign only
once on . Further, assume there is
only one local minimum in the interval.

•

Suppose

Derivative changing
sign once

Derivative changing
sign more than
once

Here is the bisection algorithm:

for

 if

 you are done;

 elseif

 ;
 ;

 else (if

 <0)

 ;
 ;
 end
end

Lec7p2, ORF363/COS323

 Lec7 Page 2

In each iteration the length of the interval where the
minimum lies is cut in half; i.e.

•

Suppose we are happy if we isolate the minimum within an
interval of length How many steps should we take?

•

(verify this)

In fact, that's what the algorithm is doing on ○

If is continuous, then bisection will find (a) root○

In each step the root is sandwiched between our new
endpoints

○

We can also use bisection for root finding•

But not as fast as the next two algorithms we'll see○

Since our intervals are halving in every step, bisection
has "linear convergence" (notion formalized later)

○

Essentially, in each iteration, we get one more correct
significant digit of the root

○

Bisection is a safe and robust algorithm•

Remarks on bisection:

To find a bracket containing minimizer, it suffices to find 3 points
 such that and

•

In many applications, we know a priori an initial interval But what if we
don't? The following strategy can do the job (assuming as).

Lec7p3, ORF363/COS323

 Lec7 Page 3

A common use of bisection in optimization

Consider an optimization problem:

s.t.

Suppose we have a black box that can test for feasibility - it tells us
whether the set is empty or not.

•

How can use the black box to solve our optimization problem?•
Note that our problem is equivalent to the following:•

s.t.

If feasible, decrease ○

If infeasible, increase ○

So we can do bisection on For each fixed call the feasibility black box
on the set .

•

If we know an interval of length where lies, we can get
 with accuracy if we call our feasibility black box
times.

•

Hence (in many cases) an efficient algorithm for feasibility
testing directly gives an efficient algorithm for optimization.

•

Lec7p4, ORF363/COS323

 Lec7 Page 4

Newton's method

Newton
(1642-1727)

Raphson
(1648-1715?)

Could not find
his picture

Suppose now that we have access to and
 Newton's method (aka the Newton-
Raphson method) for minimization is based
on the following iterations:

Local quadratic approximation of •
Solving the equation by the so-called
"method of tangents"

•

We present two different motivations for deriving this
iterative algorithm:

Local quadratic approximation

Idea: Let's approximate locally by a simpler function that we know how to
minimize; say, a quadratic function . If is quadratic itself, then our
approximation is globally correct and we terminate in one step. If it isn't, we
move to the minimum of and re-approximate again at that point with a
new quadratic.

Want to approximate at a point with a quadratic function:

We want to match:

Lec7p5, ORF363/COS323

 Lec7 Page 5

http://en.wikipedia.org/wiki/Isaac_Newton
http://en.wikipedia.org/wiki/Joseph_Raphson

Let's plug in the values of that we found:•

Do you recognize this? This is just the second order Taylor expansion of
around Not surprising.

•

Assuming the minimum of the quadratic is finite and is

achived at

 This minimum is the new point we want to jump

to:

•

This is exactly what the Newton method told us to do.

Solving

If you saw Newton's method in high school, it was probably to solve
equations (find roots), not to minimize functions.

•

But it is the same thing; we are in effect finding the roots of hoping that
they are local minima of Let

•

"method of tangents"

At we approximate with a line; the zero of the
line is our next point. Let's find the equation of the
line:

This is exactly what the Newton method told us to do.

Lec7p6, ORF363/COS323

 Lec7 Page 6

Good things can happen with Newton's method

Let's see how the Newton and the
bisection method compare on a toy
problem: Find a root of

Answer is obviously:
>> 10^(1/3)

ans =

 2.154434690031884

We run Newton with bisection wih •

Bisection

Newton

Circled in red: correct significant digits

The convergence of Newton's method is much faster than bisection•
Number of correct digits doubles in each iteration (when the iterates are
close enough to the root)

•

We'll see more about this in upcoming lectures○

This is an implication of "quadratic convergence"•

Lec7p7, ORF363/COS323

 Lec7 Page 7

Bad things can happen with Newton's method

(Remark on notation: when you see the goal is to minimze; when you see ,
the goal is to find a root.)

Convergence is sensitive to our starting point•

Moved in the wrong direction.

Iterations diverge.

Convergence can get slow if

Lec7p8, ORF363/COS323

 Lec7 Page 8

Bad things can happen with Newton's method

Convergence of Newton's method can be extremely sensitive on initial
conditions. In the example below, we are trying to find the roots of a
simple polynomial defined on the complex plane. There are arbitrarily
close initial conditions whose Newton iterations converge to completely
different roots.

Roots of

"Newton's fractal"

Each point of the complex plane is colored with one of five colors,
depending on which root of the function the Newton iterations
converge to if we start them off from the initial point

Image credit: N. Buroojy

Lec7p9, ORF363/COS323

 Lec7 Page 9

The secant method

Recall the Newton iterations for minimizing a function:

The secant method is a very simple modification of the Newton's method,
where we assume that we don't have access to , and instead approximate it
with using finite differencing:

After substitution, we get:

Note: we need two points to initialize this algorithm.•

Or, equivalently:

Simply replace with ○

Similarly, we can write a secant algorithm for root finding: •

Geometric interpretation:

Lec7p10, ORF363/COS323

 Lec7 Page 10

The secant method in action

Let's go back to our toy example:
Find a root of

Answer is obviously:
>> 10^(1/3)

ans =

 2.154434690031884

How does the secant method compare with Newton and bisection?•
We run Newton with bisection wih secant
with

•

Bisection

Newton

Circled in red: correct significant digits

Secant

Secant with
more iterations

of correct digits:

Lec7p11, ORF363/COS323

 Lec7 Page 11

Set of linear equations? Can be done efficiently. [poly-time]•
Set of quadratic equations? Can be done in finite time, but no efficient
algorithm known (and unlikely to exist). [NP-hard]

•

A single degree-4 equation? Same as above (why?). [NP-hard]•

Finding real roots in many dimensions

Here is a summary of the state of affairs for those who are interested. We'll
prove some of these statements later in the course. Some others are quite
involved and well beyond the scope of this class. (Note: everything on this
page is optional reading; I am aware that I have not defined terms like "NP-
hardness" yet. We will do this in a few weeks and you can revisit this page.)

Set of linear equations? Can be done efficiently. [poly-time]•
Set of quadratic equations? Not possible in finite time! [Undecidable]•
A single degree-4 equation? Same as above (why?).•
Google, e.g., Hilbert's 10th problem.•

Finding integer roots in many dimensions

Set of linear equations? Can be done efficiently. [poly-time]•
Set of quadratic equations? We actually currently don't know if it can be
done in finite time!

•

Finding rational roots in many dimensions

Can only get harder•
But interestingly, the linear case over the reals can still be done efficiently
(this is called linear programming!)

•

Finding an integer solution to a system of linear inequalities is however
NP-hard.

•

What about solving systems of inequalities?

Let's finish by mentioning that designing algorithms for root finding (in many
dimensions) is a central area of research in computational mathematics. Many
fundamental results of the area have only appeared in the past century.

Lec7p12, ORF363/COS323

 Lec7 Page 12

http://en.wikipedia.org/wiki/Yuri_Matiyasevich

Chapter 7 of [CZ13] also covers root finding and line search in one dimension.•

Notes:

References:

[CZ13] E.K.P. Chong and S.H. Zak. An Introduction to
Optimization. Fourth edition. Wiley, 2013.

-

[Tit13] A.L. Tits. Lecture notes on optimal control. University
of Maryland, 2013.

-

Lec7p13, ORF363/COS323

 Lec7 Page 13

