
Multivariate Newton's method •
Rate of convergence•
Modifications for global convergence•

The Gauss-Newton algorithm○

Nonlinear least squares•

This lecture:

Instructor: 
Amir Ali Ahmadi

In the previous lecture, we saw the general framework of descent 
algorithms, with several choices for the step size and the descent 
direction. We also discussed convergence issues associated with these 
methods and provided some formal definitions for studying rates of 
convergence. Our focus before was on gradient descent methods and 
variants, which use only first order information (first order derivatives). 
These algorithms achieved a linear rate of convergence.

•

Today, we see a wonderful descent method with superlinear (in fact 
quadratic) rate of convergence: the Newton algorithm. This is a 
generalization of what we saw a couple of lectures ago in dimension one 
for root finding and function minimization. 

•

The Newton's method is nothing but  a descent method with a specific 
choice of a descent direction; one that iteratively adjusts itself to the local 
geometry of the function to be minimized.

•

In practice, Newton's method can converge with much fewer iterations 
than gradient methods. For example, for quadratic functions, while we 
saw that gradient methods can zigzag for a long time (depending on the 
underlying condition number), Newton's method will always get the 
optimal solution in a single step.

•

The cost that we pay for fast convergence is the need to (i) access second 
order information (i.e., derivatives of first and second order), and (ii) 
solve a linear system of equations at every step of the algorithm.

•

Our presentation uses references [Bert03],[CZ13], [Bert09], [Tit13]. Let's 
get right to the derivation of the Newton iterates!

•
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Newton
(1642-1727)

Raphson
(1648-1715?)

Could not find 
his picture

Apparently, Raphson published 
his discovery of the "Newton's 
method" 50 years prior to 
Newton [Bert09]. That's what 
happens when people can't 
Google!

      index of time (iteration number)

     : Current point

         Next point

     : Direction to move along at iteration  

       Step size at iteration  

            

Recall the general form of our descent methods:•

where

Let us have        for now. So we take full steps at 
each iteration. (This is sometimes called the pure
Newton method.)

•

Newton's method is simply the following choice for the 
descent direction:

•

Recall our notation       and        
respectively denote the gradient and the Hessian 
at    

○

Iteration only well-defined when the Hessian at   
is invertible. 

○

                                                
         

One motivation: minimizing a quadratic approximation of the function 
sequentially.

•

Around the current iterate    let's Taylor expand our function to 
second order and minimize the resulting quadratic function.

○

Where does this come from?
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Image credit: [CZ13]

                 
        

 

 
        

              

What is the minimum of this function?•
 is lower bounded only if          (why?).•
First order necessary condition tells us that           Hence,•
              
                                                         

                                                   
  
      

If            then  is convex and hence our stationary point is a global 
optimum.

•

Newton's method picks this point as the next iterate•
   

                                                             
  
       

Newton's method for minimizing quadratic functions

Our derivation above already shows this.○

If   
 

 
            with      Newton's method finds the global 

minimum in a single iteration.

•

When  is not quadratic, we still have the following convergence result.•
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Theorem. Suppose     (i.e., three times continuously differentiable) 
and      is such that         and        is invertible. Then, 
there exists    such that itearations of Newton's method starting 
from any point           are well-defined and converge to 
    Moreover, the convergence rate is quadratic.

Lemma 1. Let   be an    matrix and       Let      denote a vector norm 
and also its associated induced matrix norm (definition right below). Then, 

                   

Interpretation: under the assumptions of the theorem, there is a basin 
around stationary points such that once you are trapped in it, you 
converge to the stationary point very fast. Once in this basin, typically no 
more than 4,5 iterations are needed to obtain the limit point with high 
accuracy.  

•

This is a local statement. No guarantee that Newton iterations would 
converge if we start far away.

○

No guarantee that our limit point will be a local minimum. It can 
potentially even be a local maximum!

○

Caution:•

To prove this theorem, we need two lemmas.

Lemma 2. Let          be a matrix valued function that is continuous at 
a point       If       exists, then there exists a scalar     such that 
      also exists for all          

Proof. See, e.g., Lemma 5.3 in Section 5.1 of [CZ13].

Proof.

Convergence and Rate of Convergence
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Proof of the theorem.
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Proof  (Cont'd).
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>> syms x1 x2;
>> f=-log(1-x1-x2)-log(x1)-log(x2);
>> gradf=gradient(f)

gradf =

- 1/(x1 + x2 - 1) - 1/x1
- 1/(x1 + x2 - 1) - 1/x2

>> Hf=hessian(f)

Hf =

[ 1/(x1 + x2 - 1)^2 + 1/x1^2,          1/(x1 + x2 - 1)^2]
[          1/(x1 + x2 - 1)^2, 1/(x1 + x2 - 1)^2 + 1/x2^2]

>> ezsurf(f,[0,.5,0,.5])

Example 1 ([Ber09]).

                              

Is this function convex? Why?•

    
 

 
   
 

 
     

                 

syms x1 x2;
f=-log(1-x1-x2)-log(x1)-log(x2);
gradf=gradient(f);
Hf=hessian(f);
N=10; %number of Newton iterations
x=zeros(2,N); fval=zeros(N,1); er=zeros(N,1); 
x(:,1)=[.8;.1]; %initial point

for k=1:N-1
    fval(k)=subs(f,{x1,x2},{x(1,k),x(2,k)});
    er(k)=norm([1/3;1/3]-x(:,k));
    x(:,k+1)=x(:,k)- subs(Hf,{x1,x2},{x(1,k),x(2,k)})\
subs(gradf,{x1,x2},{x(1,k),x(2,k)});    
end
fval(k+1)=subs(f,{x1,x2},{x(1,k+1),x(2,k+1)});
er(k+1)=norm([1/3;1/3]-x(:,k+1));

format long
output=[(1:N)' x' er fval]

Simple code for Newton iterations:
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output =

   1   0.800000000000000   0.100000000000000   0.521749194749951   4.828313737302302
   2   0.630303030303030   0.184848484848485   0.332022214840878   3.837992155333637
   3   0.407373701516407   0.296313149241797   0.082779648168232   3.330701223771961
   4   0.328873379058184   0.335563310470908   0.004986380467888   3.295971739464466
   5   0.333302700862786   0.333348649568607   0.000034248143232   3.295836872338374
   6   0.333333331925552   0.333333334037224   0.000000001573947   3.295836866004329
   7   0.333333333333333   0.333333333333333                   0                         3.295836866004329
   8   0.333333333333333   0.333333333333333                   0                         3.295836866004329
   9   0.333333333333333   0.333333333333333                   0                         3.295836866004329
  10  0.333333333333333   0.333333333333333                  0                         3.295836866004329

Example 2 ([Ber09]).

               
 

 
               

        
 

 
           

 

  
   

          
    

 

  
           

 

From [Ber09]

Four different 
initial conditions

Number of correct significant digits doubles in each iteration.

Lack of 
global 
convergence.

•

Sensitivity to 
starting 
point.

•
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Want to minimize. Want to find a zero.

The geometric interpretation for finding a root of      via Newton's 
method shows what exactly is going wrong if we start far off.

•

What is the basin of attraction of the root?     
 

 
                                                        •

Do you see why?•

Let's not take full Newton steps○

Introduce a step size.○

This motivates the guarded Newton method•
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Newton's method does not guarantee descent in every iteration; i.e., 
we may have               

•

Means that if you make a small enough step, you do get the 
decrease property.

○

But the Newton direction is a descent direction for convex functions.•

Let's recall this notion and prove this statement formally.•

Definition. For a given point      a direction     is called a descent 
direction, if there exists            such that
                                                                                  
                                              

Theorem. At any point     where        and           the Newton 
direction                   is a descent direction.                                              

Proof.

Note that what we just proved is a corollary of a more general result from 
last lecture.

•
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Newton method with a step size

            
       

  
      

We saw many choices of the step size     in the previous lecture.•
Let's learn about a new and a very popular one:•

The Armijo Rule

This is an inexact line search method. It does not find the exact minimum 
along the line. But it guarantees sufficient decrease and it's cheap.

•

Armijo rule requires two parameters:             •

Suppose we would like to minimize a univariate function     over      
(For us,               where   and   are fixed and   is a direction to 
go along, e.g., the Newton direction.)

Define an affine univariate function as 

                                                                      

                     (ensures sufficient decrease)•

                  (ensures stepsize is not too small)•

Armijo rule accepts a stepsize    if:

Note that in general there will be a whole range
of step sizes that would be accepted. 

The Armijo backtracking algorithm:

Start with some initial step size    •

If               stop; declare   as your step size.○

If               let      
 

 
    ○

At iteration   •
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Levenberg-Marquardt Modification

If           Newton's direction may not be a descent direction.•
If        is singular, Newton's direction is not even well-defined.•
Idea: let's make       positive definite if it isn't.•

                     
                 

Lemma. Let  an    matrix with eigenvalues         and let     Then, 
eigenvalues of     are             

Proof.

Comments about

If   is large enough,               
        will be a descent 

direction and by choosing a small enough step size   we can ensure 
descent.

•

As       we approach the regular Newton method.•
As       we approach a pure gradient method with a small step size 
(why?).

•

In practice, we can start with a small value of   and increase it slowly 
until we observe descent:               

•
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The Gauss-Newton method for nonlinear least squares

time

Temp.

Suppose you have observed the 
temperature in a town over the 
past several years. In view of 
seasonal effects and global 
warming, you postulate a model of 
the following form for the 
temperature at day   
                   

The task is to find the parameters 
       that best fit the data. Once this 
is done, we can use them  to predict 
temperature at a future date. 

Denote the given data points by
                

Goal is to minimize

                                
 

 

   

This is a nonlinear least squares problem.

More generally, we have a list of 
(possibly nonlinear) functions
       

            

and would like to minimize

        
    

 

   

The Gauss-Newton method is an approximation of Newton's method for 
minimizing this function.

prediction
fit

                    time

Temp.
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Given (possibly nonlinear) functions        
             (tipically 

   ), we would like to minimize

     
 

 
     

     

 

   

Let        be defined as    

  
 
  

  Let     be the    Jacobian 

matrix of    i.e.,         
      

   
      Then the Gauss-Newton iteration reads

              
       

       
      

Comments:

Unlike Newton, the Gauss-Newton method only uses first order 
information (you only see first derivatives, no second derivatives).

•

The direction        
       

       
      is a descent direction, 

because      
      is the gradient of   and       

       
  is positive 

semidefinite (why?)

•

If      
      is not invertible (i.e., it's not positive definite), then we can 

apply the Levenberg-Marquardt modification as before (shift eigenvalues 
to the right by a little bit).

•

If you were to write down the Newton iteration for minimizing   you 
would get:

•

                           
                      

 

   

 

  

     
      

Note that we are ignoring the term                
 
    This is a good 

approximation when   is close to linear or when   is small.
•

We have a (linear) least squares problem.○

Gauss-Newton equals Newton (why?).○

One iteration is enough to solve the problem globally (why?).○

If   is linear for        •
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Given (possibly nonlinear) functions        
             (tipically 

   ), we would like to minimize

     
 

 
          

 
 

 

   

Let        be defined as    

  
 
  

  Let     be the    Jacobian 

matrix of    i.e.,         
      

   
      Then the Gauss-Newton iteration reads

              
       

       
      

Derivation.

Replace     with its first order approximation         near the current 
iterate    

1.

Instead minimize 
 

 
              

   This is now a convex quadratic function; 

we know how to do it.

2.
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Notes:
The relevant [CZ13]chapter for this lecture is Chapter 9.
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