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Outline

• Optimal Control Problem

• Open- vs Closed-Loop Solutions

• Closed-Loop: Bellman’s Principle of Optimality & Dynamic Programming
• Finite spaces

• Continuous spaces – LQ control

• Open-Loop: 
• Gradient descent

• Newton descent

• DDP

• Model Predictive Control



Feedback Control

• Consider block diagram for tracking some reference signal. 
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Feedback Control

• Consider block diagram for tracking some reference signal. 

Adapted from: Stanford AA203, Spring 2021

Disturbance

Noise

http://asl.stanford.edu/aa203/


Feedback Control Objectives

• Stability: various formulations; loosely, system output is “under control”

• Tracking: output should track reference “as close as possible”

• Disturbance rejection: output should be “as insensitive as possible” to disturbances/noise

• Robustness: controller should still perform well up to “some degree of model misspecification”

Adapted from: Stanford AA203, Spring 2021

http://asl.stanford.edu/aa203/


What’s Missing?

• Performance: some mathematical quantification of all these objectives and control that realizes 
the tradeoffs

• Planning: providing an appropriate reference trajectory to track (can be highly non-trivial)

• Learning: adaptation to unknown properties of the system
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Optimal Control Problem

3 Key Ingredients:

• Mathematical description of the system to be controlled

• Specification of a performance criterion

• Specification of constraints



State-Space Models

Where

• are the state variables

• are the control variables
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State-Space Models

In compact form:

• A history of control input values during the interval [0, T] is called a control history, denoted by u

• A history of state values during the interval [0, T] is called a state trajectory, denoted by x

Adapted from: Stanford AA203, Spring 2021
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Illustrative Example

• Double integrator: point mass under controlled acceleration
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Quantifying Performance

• More generally:

• 𝑙 and 𝜙 are scalar functions, and 𝑇 may be specified or “free”

Instantaneous or stage-wise cost

Terminal Cost



Constraints

• Initial and final conditions (boundary conditions):

• Constraints on state trajectory:

• Control limits: 

• A control history and state trajectory that satisfy the control & state constraints for the entire 
time interval are termed admissible

Adapted from: Stanford AA203, Spring 2021
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The Optimal Control Problem
Definitions: State: , Control:

Continuous Time:

◦ Performance measure (minimize): 

◦ Dynamics:

◦ + other constraints, e.g., 𝒖 𝑡 ∈ 𝑈, 𝒙 𝑡 ∈ 𝑋

◦ 𝑇 < ∞ or 𝑇 = ∞

• Minimizer: (𝒙∗, 𝒖∗) is an optimal solution pair.

• Existence & uniqueness not always guaranteed



The Optimal Control Problem

Discrete Time:

◦ Performance measure (minimize): 

◦ Dynamics:

◦ + other constraints 

◦ 𝑁 < ∞ or 𝑁 = ∞



Solution Methods

Dynamic Programming (Principle of Optimality)
◦ Compositionality of optimal paths

◦ Closed-loop solutions:
find a solution for all states at all times 

Calculus of Variations (Pontryagin Maximum/Minimum Principle)
◦ “Optimal curve should be such that neighboring curves don’t lead to smaller costs” → “Derivative = 0”

◦ Open-loop solutions: 
find a solution for a given initial state

Figures: [Kelly, 2017]

https://epubs.siam.org/doi/pdf/10.1137/16M1062569


The Optimal Control Problem

Closed-loop: find policy function 𝜋∗ 𝒙, 𝑡 s.t. 𝒖∗ 𝑡 = 𝜋∗(𝒙 𝑡 , 𝑡)

Open-loop: given 𝒙 0 = 𝒙𝟎, find optimal signals: (𝒙∗, 𝒖∗), i.e., functions in 𝑊1,∞[0, 𝑇] and 𝐿∞[0, 𝑇]

Continuous Time:

• Performance measure (minimize): 

• Dynamics:

• + other constraints, e.g., 𝒖 𝑡 ∈ 𝑈, 𝒙 𝑡 ∈ 𝑋



The Optimal Control Problem

Closed-loop: find policy functions: {𝜋0
∗, … , 𝜋𝑁−1

∗ }, s.t. 𝒖∗ 𝑛 = 𝜋𝑛
∗(𝒙 𝑛 )

Open-loop: Given 𝒙 0 = 𝒙𝟎, find optimal sequences: (𝒙∗[ ], 𝒖∗[ ]).

Discrete Time:

• Performance measure (minimize): 

• Dynamics:

• + other constraints 



Optimal Control

Open Loop Closed Loop



Optimal Control

Open Loop Closed Loop

Principle of 
Optimality



Principle of Optimality

Given trajectory from a→c, with cost 𝐽𝑎𝑐 = 𝐽𝑎𝑏 + 𝐽𝑏𝑐 minimal, then 𝐽𝑏𝑐 minimal for path b→c.

Proof by contradiction:
◦ Assume there exists an alternative path b→c with lower cost ሚ𝐽𝑏𝑐 < 𝐽𝑏𝑐. Then, ሚ𝐽𝑎𝑐 = 𝐽𝑎𝑏 + ሚ𝐽𝑏𝑐 < 𝐽𝑎𝑏 + 𝐽𝑏𝑐 =
𝐽𝑎𝑐 , i.e., original path was not minimal.

[Bertsekas, 2017]

ሚ𝐽𝑏𝑐

http://athenasc.com/dpbook.html


Principle of Optimality



Applying Principle of Optimality

• Principle of Optimality: If b – c is the initial 
segment of the optimal path from b – f, then
c – f is the terminal segment of this path.

• Thus, the optimal trajectory is found by comparing:

𝐶𝑏𝑐𝑓 = 𝐽𝑏𝑐 + 𝐽𝑐𝑓
∗

𝐶𝑏𝑑𝑓 = 𝐽𝑏𝑑 + 𝐽𝑑𝑓
∗

𝐶𝑏𝑒𝑓 = 𝐽𝑏𝑒 + 𝐽𝑒𝑓
∗

[Bertsekas, 2017]

http://athenasc.com/dpbook.html


Applying Principle of Optimality

• Need only to compare concatenation of immediate decisions with optimal decisions

• In practice: carry out backwards in time.



Dynamic Programming (DP)

Dynamic Programming recursion (Bellman Recursion) proceeds backwards:

Performance measure:

Dynamics:



DP – Stochastic Case

Stochastic dynamics: 

Markovian assumption:

i.e., disturbance at time 𝑛 is only a function of the state and control at time 𝑛

Implications:

1. Distribution of next state depends only on current state and control:

2. Sufficient to look for optimal policy at time 𝑛 as a function of 𝒙[𝑛] (and not as a function of the 
entire history before time 𝑛)



DP – Stochastic Case

Applying principle of optimality and exploiting linearity of expectation:

Stochastic dynamics with Markovian property: 

Performance: 



DP – Inventory Control Example

• Stochastic DP

• Stock available 𝑥 𝑛 ∈ 𝑵, order 𝑢 𝑛 ∈ 𝑵, demand 𝑤 𝑛 ∈ 𝑵

• Dynamics: 𝑥 𝑛 + 1 = max(0, 𝑥 𝑛 + 𝑢 𝑛 − 𝑤 𝑛 )

• Constraints: 𝑥 𝑛 + 𝑢 𝑛 ≤ 2

• Simple stationary demand model: 𝑝 𝑤 𝑛 = 0 = 0.1, 𝑝 𝑤 𝑛 = 1 = 0.7, 𝑝 𝑤 𝑛 = 2 = 0.2

• Objective:

No terminal cost Cost to purchase Lost business/over-supply cost



DP – Inventory Control Example

DP Algorithm:

As an example:

Thus: 𝐽2
∗ 0 = 1.3, 𝜋2

∗ 0 = 1. Show: 𝐽0
∗ 0 = 3.7, 𝐽0

∗ 1 = 2.7, 𝐽0
∗ 2 = 2.818



DP in Discrete Spaces

Notice:

Recursion needs solution for all possible next states.
◦ Doable for finite/discrete state-spaces (e.g., grids). 

◦ Suffers from curse of dimensionality (e.g., consider quantizing a continuous state-space)

Value Iteration:

◦ Set up a recursion: 𝐽𝑛 𝒙 ← min
𝑢
(𝑙(𝑛, 𝒖, 𝒙) + 𝐽𝑛+1 𝑓𝑑 𝒙, 𝒖, 𝑛 ) for all 𝒙.

◦ Infinite horizon setting → drop the time dependence, and iterate until convergence.

Generalized Policy Iteration:
◦ Interleave policy evaluation (similar recursion with min replaced with policy), and policy improvement (argmin of 

Bellman formula with current value estimate)

Need to solve for all “successor” states first.



DP in Continuous Spaces

Rarely, we have exact solution in continuous spaces. Otherwise: need function approximation: 
Approximate Dynamic Programming

Examples:
◦ Fitted Value Iteration: bootstrap off current/delayed estimate of value function to compute “targets” and 

regress. 

◦ Meshes: perform iteration on a discrete mesh and use interpolation

Dynamics unknown: Reinforcement Learning: find optimal policy and value function using samples of 
experience (𝒙, 𝒖, 𝒙′, 𝑐).

◦ Algorithms resemble stochastic approximations of recursion formulas (+tricks)



Optimal Control

Open Loop Closed Loop

Principle of 
Optimality

Discrete-time: DP Continuous-time: HJB



Optimal Control
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Principle of 
Optimality

Discrete-time: DP Continuous-time: HJB

Application to Linear 
Dynamics



DP For LQ Control

Linear time-varying dynamics:

Quadratic time-varying cost:

𝑄𝑛 ≽ 0, 𝑅𝑛 ≻ 0

Can treat as one big (convex) QP:

Instead, let’s apply DP.



DP for LQ Control

Initialize Bellman recursion:

Apply recursion:

Plug in for dynamics, optimize w.r.t. 𝒖 (set gradients to zero*) and solve:

Plug optimal control law back into 𝐽𝑁−1
∗ to get

𝐽𝑁−1
∗ = 𝒙 𝑁 − 1 𝑇𝑉𝑁−1𝒙[𝑁 − 1]

*Confirm: ∇𝒖
2𝑄𝑁−1 𝒙, 𝒖 =

𝑅𝑁−1 + 𝐵𝑁−1
𝑇 𝑉𝑁𝐵𝑁−1 ≻ 0



Full backward recursion (Riccati difference recursion):

For 𝑁 = ∞, 𝐴𝑛, 𝐵𝑛, 𝑄𝑛, 𝑅𝑛, 𝑆𝑛 = (𝐴, 𝐵, 𝑄, 𝑅, 𝑆) with (𝐴, 𝐵) controllable, 𝑉𝑛, 𝐿𝑛 → constant matrices 
(thereby obtaining infinite horizon/stationary policy)

DP for LQ Control



DP for LQ Control

If cost has linear terms 𝑞𝑛
𝑇𝒙 𝑛 + 𝑟𝑛

𝑇𝒖[𝑛] and/or the dynamics has a drift term:

𝒙 𝑛 + 1 = 𝐴𝑛𝒙 𝑛 + 𝐵𝑛𝒖 𝑛 + 𝑐𝑛

Then, re-write using the composite state 𝒚 = 𝒙, 1 𝑇:

Implications:

• Optimal cost-to-go is a general quadratic:

• Optimal policy is time-varying affine: 



Optimal Control

Open Loop Closed Loop

Principle of 
Optimality

Discrete-time: DP

Application to Linear 
Dynamics

Indirect Methods

1. Derive 
conditions of 
optimality

2. Solve these 
equations

e.g., Pontryagin
Minimum Principle

1. Just solve as one 
big optimization 
problem.

Direct Methods

Continuous-time: HJB



Optimal Control

Open Loop Closed Loop

Principle of 
Optimality

Discrete-time: DP

Application to Linear 
Dynamics

Indirect Methods Direct Methods

Continuous-time: HJB



Open-Loop Optimal Control

Open-loop: Given 𝒙 0 = 𝒙𝟎, find optimal sequences: (𝒙∗[ ], 𝒖∗[ ]).

• If objective convex and dynamics linear → convex problem.

Discrete Time:

• Performance measure (minimize): 

• Dynamics:



Gradient Descent

• More generally, define the stage-wise Hamiltonian:

• Then, with 𝐽𝑅 𝒖 ≔ 𝐽(𝒖, 𝒙 𝒖 ), we have:

• Where 𝝀 (co-state/adjoint) satisfies a backward recursion:



Newton Descent

Dunn, 1989

Moreover, we also have:

For completeness: 

Where

https://web.mit.edu/dimitrib/www/Dunn_Bertsekas.pdf


Newton Descent

Dunn, 1989

Moreover, we also have:

Can we do better?

https://web.mit.edu/dimitrib/www/Dunn_Bertsekas.pdf


Optimal Control

Open Loop Closed Loop

Principle of 
Optimality

Discrete-time: DP Continuous-time: HJB

Application to Linear 
Dynamics

Indirect Methods Direct Methods

GD, Newton, 
SQP/SCP, IP, 

etc.



Differential Dynamic Programming (DDP)

Consider the DP recursion:
𝐽𝑛 𝒙 𝑛 = min

𝒖
[𝑙 𝒙 𝑛 , 𝒖 + 𝐽𝑛+1 𝑓𝑑 𝒙 𝑛 , 𝒖 ]

Fix sequence of controls 𝒖, with corresponding state sequence 𝒙, and for 𝑛′ = 𝑁 − 1, consider: 

𝐽𝑛′ 𝒙 𝑛′ + 𝜹𝒙 = min
𝜹𝒖

[ 𝑙 𝒙 𝑛′ + 𝜹𝒙, 𝒖 𝑛′ + 𝜹𝒖 + 𝜙 𝑓𝑑 𝒙 𝑛′ + 𝜹𝒙, 𝒖 𝑛′ + 𝜹𝒖

≔𝑄𝑛′(𝜹𝒙,𝜹𝒖)

]

Taylor expand 𝑄𝑛′ about 𝒙 𝑛′ , 𝒖 𝑛′ to 2nd order and minimize w.r.t. 𝜹𝒖
◦ Yields affine control law: 𝜹𝒖∗ 𝑛′ = 𝐿𝑛𝜹𝒙 𝑛′ + 𝜹𝒖𝑛′

◦ Substitute back into 𝑄𝑛′, yielding quadratic approximation for 𝐽𝑛′ about 𝒙[𝑛′]

◦ Continue recursion going backwards, with 
𝑄𝑛 𝜹𝒙, 𝜹𝒖 = 𝑙 𝒙 𝑛 + 𝜹𝒙, 𝒖 𝑛 + 𝜹𝒖 +𝐽𝑛+1 𝑓𝑑 𝒙 𝑛 + 𝜹𝒙, 𝒖 𝑛 + 𝜹𝒖

◦ *Almost* the Riccati backward recursion for the Newton LQ problem

Forward pass 𝒖 + 𝜹𝒖 through 𝑓𝑑 using affine control law: DDP Algorithm: “Quasi-Newton” Descent
◦ Newton would forward pass through linearized dynamics

Near optimal, behaves like Newton. Far from optimal, much more efficient.

“feedforward correction”

https://ecommons.cornell.edu/bitstream/handle/1813/5474/92-097.pdf?sequence=1&isAllowed=y


Optimal Control

Open Loop Closed Loop

Principle of 
Optimality

Discrete-time: DP Continuous-time: HJB

Application to Linear 
Dynamics

Indirect Methods Direct Methods

GD, Newton, 
SQP/SCP, IP, 

etc.

DDP

MPC



Model Predictive Control (MPC)

Implement



Tradeoffs on Open vs Closed

Open-Loop Control
◦ Rarely used blindly online due to model errors

◦ Expensive to compute online (need to use MPC and/or simplifications)

◦ Can compute offline for a set of initial conditions (e.g., a trajectory library) and adapt online via fine-tuning 
(e.g., Boston Dynamics Atlas Robot)

Closed-Loop Control
◦ Needed if there is any source of unmodelled effects (dynamics, disturbances, other agents, sensor noise), i.e., 

always

◦ Difficult to compute true optimal in discrete-time (functional recursion) or continuous-time (PDE)

◦ Difficult to certify optimality

◦ Instead, we look for certifying correctness and safety (e.g., via Lyapunov)

◦ MPC: bridge of open/closed-loop via online re-planning

◦ Feedback tracking: bridge of open/closed-loop: track open-loop plans with feedback controllers

https://youtu.be/EGABAx52GKI?t=982


Other Topics

Hybrid systems (e.g., locomotion)

Adaptive Control

Reinforcement Learning

Stochastic dynamics

Approximate Dynamic Programming

Partial observability

High-dimensional observations (vision)

Feedback controller design

Task & Motion Planning



Some References

The (updated) classic: Optimal Control & Dynamic Programming:
◦ Bertsekas Volumes 1 & 2

Introductory text – a must have:
◦ Kirk

Applied Optimal control – more advanced, generally assumes knowledge of the basics:
◦ Bryson and Ho

Model Predictive control – from a more modern perspective:
◦ Kouvaritakis & Cannon

Applied Nonlinear control – a comprehensive intro to nonlinear control:
◦ Slotine & Li

http://athenasc.com/dpbook.html
https://www.amazon.com/Optimal-Control-Theory-Introduction-Engineering/dp/0486434842
https://www.amazon.com/Applied-Optimal-Control-Arthur-Bryson/dp/0891162283
https://www.springer.com/gp/book/9783319248516
https://www.amazon.com/Applied-Nonlinear-Control-Jean-Jacques-Slotine/dp/0130408905

