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What is this course about?
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The mathematical and algorithmic theory of making optimal decisions 
subject to constraints.

Common theme of every optimization problem:

You make decisions and choose one of many alternatives.

You hope to maximize or minimize something (you have an objective).

You cannot make arbitrary decisions. Life puts constraints on you.

 This pretty much encompasses everything that you do when you 
are awake. But let’s see a few concrete examples…



Examples of optimization problems
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In what proportions to 
invest in 500 stocks?

To maximize return.

To minimize risk.

No more than 1/5 of 
your money in any one 
stock.

Transactions costs < 
$70.

Return rate > 2%.

How to drive an 
autonomous vehicle 
from A to B?

To minimize fuel 
consumption.

To minimize travel 
time.

Distance to closest 
obstacle > 2 meters.

Speed < 40 miles/hr. 

Path needs to be 
smooth (no sudden 
changes in direction).

In finance

In control engineering



Examples of optimization problems
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How to assign 
likelihoods to emails 
being spam?

To minimize probability 
of a false positive.

To penalize overfitting 
on training set.

Probability of false 
negative < .15.

Misclassification error 
on training set < 5%.

In machine learning

How to play a strategic 
game?

To maximize payoff.

To maximize social welfare.

Be at a (Nash) equilibrium.

Randomize between no more 
than five strategies.

In economics
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So the question is not

Which problems are optimization problems? 
(The answer would be everything.)

The right question is

Which optimization problems can we solve?

This is what this course is about.

We will formalize what we mean by “solve”.

We’ll see some of the most successful modern optimization tools available 
to solve a broad class of problems.

We will also see problems that we simply cannot solve.

Nevertheless, we’ll introduce strategies for dealing with them.

There will be many applications…



Prerequisites
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Linear optimization (e.g., at the level of ORF 522)

Familiarity with modeling, linear programming, and basic 
concepts of optimization.

Linear algebra

Multivariate calculus

Familiarity with MATLAB

Easy to pick up



Tentative list of topics
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Optimality conditions in nonlinear programming

Convex analysis (a good dose)

Duality and infeasibility certificates

Computational complexity 

Focus on complexity in numerical optimization

Conic programming

More in depth coverage of semidefinite programming

A module on combinatorial optimization

Selected topics:

Robust optimization

Interior point methods

Polynomial optimization

Sum of squares programming

Optimization in dynamical systems



Agenda for today
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Meet your teaching staff & classmates

Get your hands dirty with algorithms

Game 1

Game 2

Course logistics and expectations



Meet your teaching staff
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Amir Ali Ahmadi (Amir Ali, or Amirali, is my first name)

I am a relatively new Assistant Professor at ORFE. I come here from MIT, EECS, 
after a fellowship at IBM Research.

Office hours: Tuesdays, 6-8 PM, Sherrerd 329.

http://aaa.princeton.edu/ a_a_a@p...

Georgina Hall

Grad student at ORFE

Office hours: Wed 5-7, Sherrerd 322

http://scholar.princeton.edu/ghall gh4@p...

Meet your classmates!

 Your name?

 Department? 

 Maybe a bit  of 
background? 

http://aaa.princeton.edu/
http://scholar.princeton.edu/ghall
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Let’s get to the games!



Meet your fellow Princetonians!
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The green check marks tell you when your visitors are available.

You want to meet as many of them as you can, for 15 minutes each.

20 visitors, 20 time slots. How many can you meet?
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Let me start things off for you. Here is 15 meetings:

Can you do better? How much better?

You all get a copy of this Doodle on the handout. You have 8 minutes!



You tell me, I draw…
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A good attempt
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18 meetings!

Can you do better?



An even better attempt
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19 meetings!

Can you do better?

How would you convince someone that it’s impossible to do better?



19 is the best possible!

16

Proof by magic:

Do you see what’s happening?



19 is the best possible!
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There are 19 red arrows.

Each green checkmark “hits” at least one of them (by going either up or left).

If you could choose 20 green checkmarks, you would have to hit a red arrow twice.▪

And here is the magic: such a proof is always possible!



A related problem: shipping oil!

18

Rules of the problem:

Cannot exceed capacity on the edges.

For each node, except for S ant T, flow in = flow out (i.e., no storage).

Goal: ship as much oil as you can from S to T.

Image credit: [DPV08]

Before we get to our second game, let’s look at another problem which may look more 
familiar to you.



A couple of good attempts
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13 is the best possible!
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Proof by magic:

The rabbit is the red “cut”!

Any flow from S to T must cross the red curve.

So it can have value at most 13.

And here is the magic: such a proof is always possible!

What does any of this have to do with the Doodle problem?



From Doodle to Max-flow
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The idea of 
reductions

They’ll come up 
often



A real-world instance of max-flow
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How long do you think an 
optimization solver would 
take (on my laptop) to find 
the best solution here?

How many lines of code 
do you think you have to 
write for it?

How would someone 
who hasn’t seen 
optimization approach 
this?

Trial and error?

Push a little flow here, a little there…

Do you think they are likely to find the best solution?

How would they certify it?



A bit of history behind this map
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From a secret report by Harris 
and Ross (1955) written for the 
Air Force.

Railway network of the Western 
Soviet Union going to Eastern 
Europe.

Declassified in 1999.

Look at the min-cut on the map 
(called the “bottleneck”)!

There are 44 vertices, 105 edges, 
and the max flow is 163K.

Harris and Ross gave a heuristic which happened to solve the problem optimally in this case.

Later that year (1955), the famous Ford-Fulkerson algorithm came out of the RAND 
corporation. The algorithm always finds the best solution (for rational edge costs).

More on this history: [Sch05]
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Let’s look at our second problem

…and tell me which one you 
thought was easier



Robust-to-noise communication
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You are given a set of letters from an alphabet.

Want to use them for communication over a noisy channel.

Some letters look similar and can be confused at the 
receiving end because of noise. (Notion of similarity can be 
formalized; e.g., think of Hamming distance.)

Let’s draw a graph whose nodes are our letters. There is an 
edge between two nodes if and only if the letters can be 
confused. 

The largest “stable set” (aka “independent set”)!

We want to pick the maximum number of letters that we 
can safely use for communication (i.e., no two should be 
prone to confusion). 

 What are we looking for in this graph?
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Let me start things off for you. Here is a stable set of size 3:

Can you do better? How much better?

You all get a copy of this graph on the handout.

 You have 8 minutes!



You tell me, I draw…
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A couple of good attempts
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Can you do better?

Size 4



A couple of good attempts
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Can you do better?

Size 5



A couple of good attempts
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Tired of trying?

Is this the best possible?

Size 5



5 is the best possible!
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Proof by magic?
Unfortunately not 

No magician in the world has pulled out 
such a rabbit to this day!  (By this we 
mean a rabbit that would work on all
graphs.)

Of course there is always a proof:

Try all possible subsets of 6 nodes. 

There are 924 of them. 

Observe that none of them work.

But this is no magic. It impresses nobody. We want 
a “short” proof. (We will formalize what this means.) 
Like the one in our Doodle/max-flow examples.

Let’s appreciate this further…



What our graph can look like with 32 letters
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Maximum stable set anyone? ;)

Is there a stable set of size 16?

Want to try all possibilities? There are over 600 million of them!! 

If the graph had 100 nodes, there would be over 1018 possibilities to try!



But there is some good news
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Even though finding the best solution always 
may be too much to hope for, techniques 
from optimization (and in particular from the 
area of  convex optimization) often allow us to 
find high-quality solutions with performance 
guarantees.

For example, an optimization algorithm may 
quickly find  a stable set of size 15 for you.

You really want to know if 16 is impossible. 
Instead, another optimization algorithm (or 
sometimes the same one) tells you that 18 is 
impossible.

This is very useful information! You know you got 15, and no one can do better than 18.

We sill see a lot of convex optimization in this class!



A related problem: capacity of a graph
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Capacity of a graph
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Which of the two problems was harder for you?
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Not always obvious. A lot of research in optimization and computer science 
goes into distinguishing the “tractable” problems from the “intractable” ones.

The two brain teasers actually just gave you a taste of the P vs. NP problem. (If 
you haven’t seen these concepts formally, that’s OK. You will soon.)

The first problem we can solve efficiently (in “polynomial time”).

The second problem: no one knows. If you do, you literally get $1M!

 More importantly, your algorithm immediately translates to an efficient 
algorithm for thousands of other problems no one knows how to solve.
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Modelling problems as  a 
mathematical program



Let’s revisit our first game
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What were your decision 
variables?

What were your constraints?

What was your objective 
function?



Let’s revisit our second game
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What were your decision 
variables?

What were your constraints?

What was your objective 
function?



Why one hard and one easy? How can you tell?
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Caution: just because we can write something as a 
mathematical program, it doesn’t mean we can solve it.



Fermat’s Last Theorem
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Sure:

And there are infinitely many more…

How about 

How about 

How about 



Fermat’s Last Theorem
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Fermat’s Last Theorem
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Consider the following optimization problem (mathematical program):

Innocent-looking optimization problem: 4 variables, 5 constraints.

If you could show the optimal value is non-zero, you would prove 
Fermat’s conjecture!



Course objectives
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The skills I hope you acquire:

Ability to view your own field through the lens of optimization and computation

To help you, we’ll draw basic applications from operations research, dynamical 
systems, finance, machine learning, engineering, …

Comfort with proofs in convex analysis.

Improved coding abilities (in MATLAB, CVX, YALMIP)

There will be a computational component on every homework (usually the fun part 
of the homework)

Ability to recognize hard and easy optimization problems.

Ability to rigorously show an optimization problem is hard.

Solid understanding of conic optimization, in particular semidefinite programming.

Familiarity with selected topics: robust optimization, polynomial optimization, 
optimization in dynamical systems, etc.



Software you need to download
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MATLAB

http://cvxr.com/cvx/

Right away:

In the next couple of weeks (will likely appear on HW#2):

CVX

http://www.princeton.edu/software/licenses/software/matlab/

http://users.isy.liu.se/johanl/yalmip/

Towards the end of the course:

YALMIP



Course logistics
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Your grade:

 50% homework (5 or 6 total – biweekly, can drop your lowest score, no extensions allowed)

 Collaboration policy: you can and are encouraged. Turn in individual psets. Write the name of your collaborators.

 20 % Midterm exams (in class – 80 mins, a single double-sided page of cheatsheet allowed)

 Exam 1: March 3rd, Exam 2: in April, date TBA. Not cumulative. Can drop the lower score.

 30% Final exam/assignment (think of it as a longer, cumulative homework that needs to be 
done with no collaboration). In rare cases, may be replaced with a project. See syllabus.

Textbooks

 What matters primarily is class notes. You are expected to take good notes. (I teach on the 
blackboard most of the time.)  Georgina will kindly provide lecture outlines. I will also 
occasionally post the notes that I use to prepare for lecture.

 Four references will be posted on the course website if you want to read further – all should 
be free to download online.

Course website:     aaa.princeton.edu/orf523

(should go live in a couple of days)



Image credits and references
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- [DPV08] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. 
McGraw Hill, 2008.
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(till 1960). In “Handbook of Discrete Optimization”, Elsevier, 2005.     
http://homepages.cwi.nl/~lex/files/histco.pdf


