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When can we solve an optimization problem efficiently?
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Arguably, this is the main question an optimizer should be concerned with. At 
least if his/her view on optimization is computational.

A quote from our first lecture:

The right question in optimization is not

Which problems are optimization problems? 
(The answer would be everything.)

The right question is

Which optimization problems can we solve?



Is it about the number of decision variables and constraints?
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No!

Consider the following optimization problem:

Innocent-looking optimization problem: 4 variables, 5 
constraints.

If you could show the optimal value is non-zero, you would prove 
Fermat’s conjecture!



Is it about being linear versus nonlinear?
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• We can solve many nonlinear optimization problems efficiently:

– QP

– Convex QCQP

– SOCP

– SDP

– …

No!



Is it about being convex versus nonconvex?
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But is it really?

Hmmm…many would say

“In fact the great watershed in 
optimization isn't between 
linearity and nonlinearity, but 
convexity and nonconvexity.”

Famous quote-

Rockafellar, ’93:

(if I could only get 10 cents for every time somebody gave a talk and justified giving a heuristic 
by saying that his problem was nonconvex….)



Is it about being convex versus nonconvex?
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We already showed that you can write any optimization problem as a convex 
problem:

 Write the problem in epigraph form to get a linear objective

 Replace the constraint set with its convex hull

So at least we know it’s not just about the geometric property of convexity; 
somehow the (algebraic) description of the problem matters

There are many convex sets that we know we cannot efficiently optimize over

 Or we cannot even test membership to

 We’ll see some examples (set of copositive matrices, positive polynomials, etc.).



Is it about being convex versus nonconvex?
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Even more troublesome, there are non-convex problems that are easy.

Who can name four of them that we’ve seen already?



Is it about being convex versus nonconvex?
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Even more troublesome, there are non-convex problems that are easy.

Who can name four of them that we’ve seen already?



Is it about being convex versus nonconvex?
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I admit the question is tricky

For some of these non-convex problems, one can come up with an equivalent 
convex formulation

But how can we tell when this can be done?

We saw, e.g., that when you tweak the problem a little bit, the situation can 
change

 Recall, e.g., that for output feedback stabilization we had no convex formulation

 Or for generalization of the S-lemma to QCQP with more constraints…

Can we have techniques for showing that (an efficiently solvable) convex 
formulation is impossible?



Is it about being convex versus nonconvex?
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My view on this question:

Convexity is a rule of thumb.

It’s a very useful rule of thumb. 

 Often it characterizes the complexity of the problem correctly.

 But there are exceptions.

Incidentally, it may not even be easy to check convexity unless you are in pre-
specified situations (recall the CVX rules for example).

 Maybe good enough for many applications.

To truly and rigorously speak about complexity of a problem, we need to go 
beyond this rule of thumb.

Computational complexity theory is an essential tool for optimizers.



Why computational complexity?
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What is computational complexity theory?

It’s a branch of mathematics that provides a formal framework for 
studying how efficiently one can solve problems on a computer.

This is absolutely crucial to optimization and many other computational sciences.

In optimization, we are constantly looking for algorithms to solve various 
problems as fast as possible. So it is of immediate interest to understand the 
fundamental limitations of efficient algorithms.

To start, how can we formalize what it means for a problem to be “easy” or 
“hard”?

Let’s begin by understanding what it means to have a “problem”!



Optimization problems/Decision problems/Search problems
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(answer to a decision question is just YES or NO)

Optimization problem:

Decision problem:

Search problem:

It turns out that all three problems are equivalent, in the sense that if you could solve 
one efficiently, you could also solve the other two (why?). See Ex. 8.1,8.2 of [DPV].

We will focus on decision problems, since it’s a bit cleaner to develop the 
theory there, and since it can only make our negative results stronger.



A “problem” versus a “problem instance”
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A (decision) problem is a general description of a problem to be answered with 
yes or no. 

Every decision problem has a finite input that needs to be specified for us to 
choose a yes/no answer.

Each such input defines an instance of the problem.

A decision problem has an infinite number of instances. 
(Why doesn’t it make sense to study problems with a finite number of instances?)

Different instances of the STABLE SET problem:

(It is common to use capital letters for the name of a decision problem.)



Examples of decision problems
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LINEQ

An instance of LINEQ:

ZOLINEQ

An instance of ZOLINEQ:

Remark. Input is rational so we can represent it with a finite number of bits. This 
is the so-called “bit model of computation”, aka the “Turing model.’’



Examples of decision problems
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LP

An instance of LP:

(This is equivalent to testing LP feasibility.)

IP



Examples of decision problems
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MAXFLOW

An instance of MAXFLOW:

Let’s look at a problem we 
have seen…

Can you formulate the 
decision problem?



Examples of decision problems
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COLORING

For example, the following graph is 
3-colorable.

Graph coloring has important 
applications in job scheduling.

We want to understand how fast can all these problems be solved?



Size of an instance
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To talk about the running time of an algorithm, we need to have a notion of the 
“size of the input”.

Of course, an algorithm is allowed to take longer on larger instances.

COLORING STABLE SET

Reasonable candidates for input size:

Number of nodes n

Number of nodes + number of edges 
(number of edges can at most be n(n-1)/2)

Number of bits required to store the adjacency 
matrix of the graph



Size of an instance
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In general, can think of input size as the total number of bits required to represent 
the input.

For example, consider our LP problem:

LP

• Input size is bounded by 2 𝑚𝑛 +𝑚 + 𝑛 + 1 log 𝐿, where 𝐿 is the largest 
integer appearing in the numerator or denominator of any entry of 𝐴, 𝑏, 𝑐, 𝑘.

• Same idea holds for all other decision problems we introduced.



Useful notation for referring to running times
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Polynomial-time and exponential-time algorithms 
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Comparison of running times

22Image credit: [GJ79]



Can Moore’s law come to rescue?

23Image credit: [GJ79]



The complexity class P
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The class of all decision problems that admit a polynomial-time algorithm.



Example of a problem in P
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PENONPAPER

Peek ahead: this problem is asking if there is a path that visits every edge exactly once.

If we were to ask for a path that instead visits every node exactly once, we would have 
a completely different story in terms of complexity!



How to prove a problem is in P?
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Develop a poly-time algorithm from scratch! Can be far from trivial (examples below).

Much easier: use a poly-time hammer somebody else has developed. (Reductions!)



An aside: Factoring
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Despite knowing that PRIMES is in P, it is a major open problem to determine 
whether we can factor an integer in polynomial time.

$200,000 prize money by RSA

$100,000 prize money by RSA

Google “RSA challenge”; was active until 2007.



Reductions
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Many new problems are shown to be in P via a reduction to a problem that is 
already known to be in P.

What is a reduction?

Very intuitive idea -- A reduces to B means: “If we could do B, then we could do A.”

Being happy in life reduces to finding a good partner.

Passing the quals reduces to getting four A-’s.

Getting an A+ in ORF 523 reduces to finding the Shannon capacity of C7.

…

Well-known joke - mathematician versus engineer boiling water:

Day 1:

Day 2:



Reductions
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A reduction from a decision problem A to a 
decision problem B is  

a “general recipe” (aka an algorithm)
for taking any instance of A and explicitly 
producing an instance of B,  such that

the answer to the instance of A is YES if 
and only if the answer to the produced 
instance of B is YES.

This enables us to answer A by answering B.



MAXFLOW→LP
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MAXFLOW

LP

Poly-time
reduction
(shown on once instance)



Polynomial time reductions
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MINCUT
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MINCUT

Is MINCUT in P?

Yes! We’ll reduce it to LP.



MIN S-T CUT

33

MIN S-T CUT

Strong duality of linear programming implies 
the minimum S-T cut of a graph is exactly equal 
to the maximum flow that can be sent from S 
to T.

Hence, MIN S-T CUTMAXFLOW

We have already seen that
MAXFLOW LP.

But what about MINCUT? (without 
designated S and T)



MINCUTMIN S-T CUT
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Pick a node (say, node A)

Compute MIN S-T CUT from A to every other 
node

Compute MIN S-T CUT from every other 
node to A

Take the minimum over all these 2(|V|-1) 
numbers

That’s your MINCUT!

The reduction is polynomial in length.



Overall reduction
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We have shown the following:

MINCUTMIN S-T CUTMAXFLOWLP

Polynomial time reductions compose (why?):

MINCUTLP

Unfortunately, we are not so lucky with all 
decision problems…

Now comes the bad stuff…



MAXCUT
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MAXCUT

Examples with edge 
costs equal to 1:

To date, no one has come up with a polynomial time algorithm for MAXCUT.

We want to understand why that is…

Cut value=8

Cut value=23
(optimal)



The traveling salesman problem (TSP)
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Again, nobody knows how to solve this efficiently (over all instances).

Note the sharp contrast with PENONPAPER.

Amazingly, MAXCUT and TSP are in a precise sense “equivalent”: there is a 
polynomial time reduction between them in either direction.

TSP



TSP

38Reference: http://www.math.uwaterloo.ca/tsp



The complexity class NP
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A decision problem belongs to the class NP (Nondeterministic Polynomial 
time) if every YES instance has a “certificate” of its correctness that can be 
verified in polynomial time.

Examples: TSP, MAXCUT, PENONPAPER….what’s the certificate in each case?



The complexity class NP
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RINCETO

TSP

 MAXCUT

STABLE SET

SAT

3SAT

PARTITION

KNAPSACK

IP

COLORING

VERTEXCOVER

3DMATCHING

SUDOKU,…



NP-hard and NP-complete problems
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A decision problem is said to be NP-hard if every problem in NP reduces to it via a 
polynomial-time reduction.
(roughly means “harder than all problems in NP.”)

Definition.

A decision problem is said to be NP-complete if

(i)It is NP-hard

(ii)It is in NP.

(roughly means “the hardest problems in NP.”)

Definition.

NP-hardness is shown by a reduction from a problem that’s already known to be NP-hard.

Membership in NP is shown by presenting an easily checkable certificate of the YES 
answer.

NP-hard problems may not be in NP (or may not be known to be in NP as is often the 
case.)

Remarks.



The complexity class NP
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RINCETO

TSP

 MAXCUT

STABLE SET

SAT

3SAT

PARTITION

KNAPSACK

IP

COLORING

VERTEXCOVER

3DMATCHING

SUDOKU,…

NP-complete



The satisfiability problem (SAT)
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Input: A Boolean formula in conjunctive normal form (CNF).

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

SAT  (one of the most fundamental NP-complete problems.)



The satisfiability problem (SAT)
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Input: A Boolean formula in conjunctive normal form (CNF).

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

SAT



3SAT
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Input: A Boolean formula in conjunctive normal form (CNF), where each clause has 
exactly three literals.

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

3SAT

There is a simple reduction from SAT to 3SAT. 

Hence, since SAT is NP-hard, then so is 3SAT. Moreover, 3SAT is clearly in NP (why?), 
so 3SAT is NP-complete.



Reductions (again)
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A reduction from a decision problem A to a 
decision problem B is  

a “general recipe” (aka an algorithm)
for taking any instance of A and explicitly 
producing an instance of B,  such that

the answer to the instance of A is YES if 
and only if the answer to the produced 
instance of B is YES.

This enables us to answer A by answering B.

This time we use the reduction for a different purpose:

 If A is known to be hard, then B must also be hard.



The first 21 (official) reductions
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Today we have thousands of 
NP-complete problems. In all 
areas of science and 
engineering.



The value of reductions

48[Garey, Johnson]



Practice with reductions
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I’ll do a few reductions on the board:

3SATSTABLE SET 

STABLE SET 0/1 IP (trivial)

STABLE SET QUADRATIC EQS (trivial)

3SATPOLYPOS (degree 6)

ONE-IN-THREE 3SATPOLYPOS (degree 4)

NP-hardness of testing local optimality!

For homework you can do:

3SAT  ONE-IN-THREE 3SAT

PARTITIONPOLYPOS (degree 4)



3SATSTABLE SET
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We show the reduction on an instance only. The pattern should be clear.



STABLE SET  0/1 Integer Programming
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STABLE SET  Feasibility of Quadratic Equations
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3SATPOLYPOS (degree 6)
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We show the reduction on an instance only. The pattern should be clear.



3SATPOLYPOS (degree 6)
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ONE-IN-THREE 3SAT

(satisfiable)

(unsatisfiable)

• Has the same input as 3SAT.

• But asks whether there is a 0/1 assignment to the variables that in each clause 
satisfies exactly one literal. 

• Reduction from 3SAT to ONE-IN-THREE 3SAT is on your homework.



ONE-IN-THREE-3SATPOLYPOS (degree 4)
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Almost the same construction as before, except ONE-IN-THREE-3SAT allows us to kill 
some terms and reduce the degree to 4. Nice!

Moral: Picking the tight problem for as the base problem of the 
reduction can make your life a lot simpler!

An aside: Testing convexity of quartics is also NP-hard! [AOPT13] 



The knapsack problem
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KNAPSACK



The partition problem
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PARTITION

Note that the YES answer is easily verifiable.

 How would you efficiently verify a NO answer? (no one knows)



Testing polynomial positivity
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A reduction from PARTITION to POLYPOS is on your homework.

POLYPOS

Is there an easy certificate of the NO answer? (the answer is believed to be negative)

Is there an easy certificate of the YES answer? We don’t know; the obvious approach 
doesn’t work:



But what about the first NP-complete problem?!!
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The Cook-Levin theorem.

In a way a very deep theorem.

At the same time almost a tautology.

We argued in class how every 
problem in NP can be reduced to 
CIRCUIT SAT.

 See Chapter 8 of [DPV]. 

CIRCUIT SAT SAT 3SAT (easy reductions)



The domino effect
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All NP-complete problems reduce to each other!

If you solve one in polynomial time, you solve ALL in polynomial time!



The $1M question!
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• Most people believe the answer is NO!
• Philosophical reason: If a proof of the Goldbach conjecture were to fly from 

the sky, we could certainly efficiently verify it. But should this imply that we 
can find this proof efficiently? P=NP would imply the answer is yes.



Nevertheless, there are believers too…

63

• Over 100 wrong proofs have appeared so far (in both directions)! See
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm



Main messages…
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Computational complexity theory beautifully classifies many problems of optimization 
theory as easy or hard 

At the most basic level, easy means “in P”, hard means “NP-hard.”

The boundary between the two is very delicate:

MINCUT vs. MAXCUT, PENONPAPER vs. TSP, LP vs. IP, ...

Important: When a problem is shown to be NP-hard, it doesn’t mean that we should 
give up all hope. NP-hard problems arise in applications all the time. There are good 
strategies for dealing with them.

Solving special cases exactly

Heuristics that work well in practice

Using convex optimization to find bounds and near optimal solutions

Approximation algorithms – suboptimal solutions with worst-case guarantees

P=NP?

Maybe one of you guys will tell us one day.
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