
1

Computational Complexity
in Numerical Optimization

ORF 523
Lecture 13

Instructor: Amir Ali Ahmadi
TA: G. Hall

Spring 2016

When can we solve an optimization problem efficiently?

2

Arguably, this is the main question an optimizer should be concerned with. At
least if his/her view on optimization is computational.

A quote from our first lecture:

The right question in optimization is not

Which problems are optimization problems?
(The answer would be everything.)

The right question is

Which optimization problems can we solve?

Is it about the number of decision variables and constraints?

3

No!

Consider the following optimization problem:

Innocent-looking optimization problem: 4 variables, 5
constraints.

If you could show the optimal value is non-zero, you would prove
Fermat’s conjecture!

Is it about being linear versus nonlinear?

4

• We can solve many nonlinear optimization problems efficiently:

– QP

– Convex QCQP

– SOCP

– SDP

– …

No!

Is it about being convex versus nonconvex?

5
But is it really?

Hmmm…many would say

“In fact the great watershed in
optimization isn't between
linearity and nonlinearity, but
convexity and nonconvexity.”

Famous quote-

Rockafellar, ’93:

(if I could only get 10 cents for every time somebody gave a talk and justified giving a heuristic
by saying that his problem was nonconvex….)

Is it about being convex versus nonconvex?

6

We already showed that you can write any optimization problem as a convex
problem:

 Write the problem in epigraph form to get a linear objective

 Replace the constraint set with its convex hull

So at least we know it’s not just about the geometric property of convexity;
somehow the (algebraic) description of the problem matters

There are many convex sets that we know we cannot efficiently optimize over

 Or we cannot even test membership to

 We’ll see some examples (set of copositive matrices, positive polynomials, etc.).

Is it about being convex versus nonconvex?

7

Even more troublesome, there are non-convex problems that are easy.

Who can name four of them that we’ve seen already?

Is it about being convex versus nonconvex?

8

Even more troublesome, there are non-convex problems that are easy.

Who can name four of them that we’ve seen already?

Is it about being convex versus nonconvex?

9

I admit the question is tricky

For some of these non-convex problems, one can come up with an equivalent
convex formulation

But how can we tell when this can be done?

We saw, e.g., that when you tweak the problem a little bit, the situation can
change

 Recall, e.g., that for output feedback stabilization we had no convex formulation

 Or for generalization of the S-lemma to QCQP with more constraints…

Can we have techniques for showing that (an efficiently solvable) convex
formulation is impossible?

Is it about being convex versus nonconvex?

10

My view on this question:

Convexity is a rule of thumb.

It’s a very useful rule of thumb.

 Often it characterizes the complexity of the problem correctly.

 But there are exceptions.

Incidentally, it may not even be easy to check convexity unless you are in pre-
specified situations (recall the CVX rules for example).

 Maybe good enough for many applications.

To truly and rigorously speak about complexity of a problem, we need to go
beyond this rule of thumb.

Computational complexity theory is an essential tool for optimizers.

Why computational complexity?

11

What is computational complexity theory?

It’s a branch of mathematics that provides a formal framework for
studying how efficiently one can solve problems on a computer.

This is absolutely crucial to optimization and many other computational sciences.

In optimization, we are constantly looking for algorithms to solve various
problems as fast as possible. So it is of immediate interest to understand the
fundamental limitations of efficient algorithms.

To start, how can we formalize what it means for a problem to be “easy” or
“hard”?

Let’s begin by understanding what it means to have a “problem”!

Optimization problems/Decision problems/Search problems

12

(answer to a decision question is just YES or NO)

Optimization problem:

Decision problem:

Search problem:

It turns out that all three problems are equivalent, in the sense that if you could solve
one efficiently, you could also solve the other two (why?). See Ex. 8.1,8.2 of [DPV].

We will focus on decision problems, since it’s a bit cleaner to develop the
theory there, and since it can only make our negative results stronger.

A “problem” versus a “problem instance”

13

A (decision) problem is a general description of a problem to be answered with
yes or no.

Every decision problem has a finite input that needs to be specified for us to
choose a yes/no answer.

Each such input defines an instance of the problem.

A decision problem has an infinite number of instances.
(Why doesn’t it make sense to study problems with a finite number of instances?)

Different instances of the STABLE SET problem:

(It is common to use capital letters for the name of a decision problem.)

Examples of decision problems

14

LINEQ

An instance of LINEQ:

ZOLINEQ

An instance of ZOLINEQ:

Remark. Input is rational so we can represent it with a finite number of bits. This
is the so-called “bit model of computation”, aka the “Turing model.’’

Examples of decision problems

15

LP

An instance of LP:

(This is equivalent to testing LP feasibility.)

IP

Examples of decision problems

16

MAXFLOW

An instance of MAXFLOW:

Let’s look at a problem we
have seen…

Can you formulate the
decision problem?

Examples of decision problems

17

COLORING

For example, the following graph is
3-colorable.

Graph coloring has important
applications in job scheduling.

We want to understand how fast can all these problems be solved?

Size of an instance

18

To talk about the running time of an algorithm, we need to have a notion of the
“size of the input”.

Of course, an algorithm is allowed to take longer on larger instances.

COLORING STABLE SET

Reasonable candidates for input size:

Number of nodes n

Number of nodes + number of edges
(number of edges can at most be n(n-1)/2)

Number of bits required to store the adjacency
matrix of the graph

Size of an instance

19

In general, can think of input size as the total number of bits required to represent
the input.

For example, consider our LP problem:

LP

• Input size is bounded by 2 𝑚𝑛 +𝑚 + 𝑛 + 1 log 𝐿, where 𝐿 is the largest
integer appearing in the numerator or denominator of any entry of 𝐴, 𝑏, 𝑐, 𝑘.

• Same idea holds for all other decision problems we introduced.

Useful notation for referring to running times

20

Polynomial-time and exponential-time algorithms

21

Comparison of running times

22Image credit: [GJ79]

Can Moore’s law come to rescue?

23Image credit: [GJ79]

The complexity class P

24

The class of all decision problems that admit a polynomial-time algorithm.

Example of a problem in P

25

PENONPAPER

Peek ahead: this problem is asking if there is a path that visits every edge exactly once.

If we were to ask for a path that instead visits every node exactly once, we would have
a completely different story in terms of complexity!

How to prove a problem is in P?

26

Develop a poly-time algorithm from scratch! Can be far from trivial (examples below).

Much easier: use a poly-time hammer somebody else has developed. (Reductions!)

An aside: Factoring

27

Despite knowing that PRIMES is in P, it is a major open problem to determine
whether we can factor an integer in polynomial time.

$200,000 prize money by RSA

$100,000 prize money by RSA

Google “RSA challenge”; was active until 2007.

Reductions

28

Many new problems are shown to be in P via a reduction to a problem that is
already known to be in P.

What is a reduction?

Very intuitive idea -- A reduces to B means: “If we could do B, then we could do A.”

Being happy in life reduces to finding a good partner.

Passing the quals reduces to getting four A-’s.

Getting an A+ in ORF 523 reduces to finding the Shannon capacity of C7.

…

Well-known joke - mathematician versus engineer boiling water:

Day 1:

Day 2:

Reductions

29

A reduction from a decision problem A to a
decision problem B is

a “general recipe” (aka an algorithm)
for taking any instance of A and explicitly
producing an instance of B, such that

the answer to the instance of A is YES if
and only if the answer to the produced
instance of B is YES.

This enables us to answer A by answering B.

MAXFLOW→LP

30

MAXFLOW

LP

Poly-time
reduction
(shown on once instance)

Polynomial time reductions

31

MINCUT

32

MINCUT

Is MINCUT in P?

Yes! We’ll reduce it to LP.

MIN S-T CUT

33

MIN S-T CUT

Strong duality of linear programming implies
the minimum S-T cut of a graph is exactly equal
to the maximum flow that can be sent from S
to T.

Hence, MIN S-T CUTMAXFLOW

We have already seen that
MAXFLOW LP.

But what about MINCUT? (without
designated S and T)

MINCUTMIN S-T CUT

34

Pick a node (say, node A)

Compute MIN S-T CUT from A to every other
node

Compute MIN S-T CUT from every other
node to A

Take the minimum over all these 2(|V|-1)
numbers

That’s your MINCUT!

The reduction is polynomial in length.

Overall reduction

35

We have shown the following:

MINCUTMIN S-T CUTMAXFLOWLP

Polynomial time reductions compose (why?):

MINCUTLP

Unfortunately, we are not so lucky with all
decision problems…

Now comes the bad stuff…

MAXCUT

36

MAXCUT

Examples with edge
costs equal to 1:

To date, no one has come up with a polynomial time algorithm for MAXCUT.

We want to understand why that is…

Cut value=8

Cut value=23
(optimal)

The traveling salesman problem (TSP)

37

Again, nobody knows how to solve this efficiently (over all instances).

Note the sharp contrast with PENONPAPER.

Amazingly, MAXCUT and TSP are in a precise sense “equivalent”: there is a
polynomial time reduction between them in either direction.

TSP

TSP

38Reference: http://www.math.uwaterloo.ca/tsp

The complexity class NP

39

A decision problem belongs to the class NP (Nondeterministic Polynomial
time) if every YES instance has a “certificate” of its correctness that can be
verified in polynomial time.

Examples: TSP, MAXCUT, PENONPAPER….what’s the certificate in each case?

The complexity class NP

40

RINCETO

TSP

 MAXCUT

STABLE SET

SAT

3SAT

PARTITION

KNAPSACK

IP

COLORING

VERTEXCOVER

3DMATCHING

SUDOKU,…

NP-hard and NP-complete problems

41

A decision problem is said to be NP-hard if every problem in NP reduces to it via a
polynomial-time reduction.
(roughly means “harder than all problems in NP.”)

Definition.

A decision problem is said to be NP-complete if

(i)It is NP-hard

(ii)It is in NP.

(roughly means “the hardest problems in NP.”)

Definition.

NP-hardness is shown by a reduction from a problem that’s already known to be NP-hard.

Membership in NP is shown by presenting an easily checkable certificate of the YES
answer.

NP-hard problems may not be in NP (or may not be known to be in NP as is often the
case.)

Remarks.

The complexity class NP

42

RINCETO

TSP

 MAXCUT

STABLE SET

SAT

3SAT

PARTITION

KNAPSACK

IP

COLORING

VERTEXCOVER

3DMATCHING

SUDOKU,…

NP-complete

The satisfiability problem (SAT)

43

Input: A Boolean formula in conjunctive normal form (CNF).

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

SAT (one of the most fundamental NP-complete problems.)

The satisfiability problem (SAT)

44

Input: A Boolean formula in conjunctive normal form (CNF).

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

SAT

3SAT

45

Input: A Boolean formula in conjunctive normal form (CNF), where each clause has
exactly three literals.

Question: Is there a 0/1 assignment to the variables that satisfies the formula?

3SAT

There is a simple reduction from SAT to 3SAT.

Hence, since SAT is NP-hard, then so is 3SAT. Moreover, 3SAT is clearly in NP (why?),
so 3SAT is NP-complete.

Reductions (again)

46

A reduction from a decision problem A to a
decision problem B is

a “general recipe” (aka an algorithm)
for taking any instance of A and explicitly
producing an instance of B, such that

the answer to the instance of A is YES if
and only if the answer to the produced
instance of B is YES.

This enables us to answer A by answering B.

This time we use the reduction for a different purpose:

 If A is known to be hard, then B must also be hard.

The first 21 (official) reductions

47

Today we have thousands of
NP-complete problems. In all
areas of science and
engineering.

The value of reductions

48[Garey, Johnson]

Practice with reductions

49

I’ll do a few reductions on the board:

3SATSTABLE SET

STABLE SET 0/1 IP (trivial)

STABLE SET QUADRATIC EQS (trivial)

3SATPOLYPOS (degree 6)

ONE-IN-THREE 3SATPOLYPOS (degree 4)

NP-hardness of testing local optimality!

For homework you can do:

3SAT  ONE-IN-THREE 3SAT

PARTITIONPOLYPOS (degree 4)

3SATSTABLE SET

50

We show the reduction on an instance only. The pattern should be clear.

STABLE SET  0/1 Integer Programming

51

STABLE SET  Feasibility of Quadratic Equations

52

3SATPOLYPOS (degree 6)

53

We show the reduction on an instance only. The pattern should be clear.

3SATPOLYPOS (degree 6)

54

ONE-IN-THREE 3SAT

(satisfiable)

(unsatisfiable)

• Has the same input as 3SAT.

• But asks whether there is a 0/1 assignment to the variables that in each clause
satisfies exactly one literal.

• Reduction from 3SAT to ONE-IN-THREE 3SAT is on your homework.

ONE-IN-THREE-3SATPOLYPOS (degree 4)

56

Almost the same construction as before, except ONE-IN-THREE-3SAT allows us to kill
some terms and reduce the degree to 4. Nice!

Moral: Picking the tight problem for as the base problem of the
reduction can make your life a lot simpler!

An aside: Testing convexity of quartics is also NP-hard! [AOPT13]

The knapsack problem

57

KNAPSACK

The partition problem

58

PARTITION

Note that the YES answer is easily verifiable.

 How would you efficiently verify a NO answer? (no one knows)

Testing polynomial positivity

59

A reduction from PARTITION to POLYPOS is on your homework.

POLYPOS

Is there an easy certificate of the NO answer? (the answer is believed to be negative)

Is there an easy certificate of the YES answer? We don’t know; the obvious approach
doesn’t work:

But what about the first NP-complete problem?!!

60

The Cook-Levin theorem.

In a way a very deep theorem.

At the same time almost a tautology.

We argued in class how every
problem in NP can be reduced to
CIRCUIT SAT.

 See Chapter 8 of [DPV].

CIRCUIT SAT SAT 3SAT (easy reductions)

The domino effect

61

All NP-complete problems reduce to each other!

If you solve one in polynomial time, you solve ALL in polynomial time!

The $1M question!

62

• Most people believe the answer is NO!
• Philosophical reason: If a proof of the Goldbach conjecture were to fly from

the sky, we could certainly efficiently verify it. But should this imply that we
can find this proof efficiently? P=NP would imply the answer is yes.

Nevertheless, there are believers too…

63

• Over 100 wrong proofs have appeared so far (in both directions)! See
http://www.win.tue.nl/~gwoegi/P-versus-NP.htm

Main messages…

64

Computational complexity theory beautifully classifies many problems of optimization
theory as easy or hard

At the most basic level, easy means “in P”, hard means “NP-hard.”

The boundary between the two is very delicate:

MINCUT vs. MAXCUT, PENONPAPER vs. TSP, LP vs. IP, ...

Important: When a problem is shown to be NP-hard, it doesn’t mean that we should
give up all hope. NP-hard problems arise in applications all the time. There are good
strategies for dealing with them.

Solving special cases exactly

Heuristics that work well in practice

Using convex optimization to find bounds and near optimal solutions

Approximation algorithms – suboptimal solutions with worst-case guarantees

P=NP?

Maybe one of you guys will tell us one day.

65

References:

- [DPV08] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms.
McGraw Hill, 2008.

- [GJ79] D.S. Johnson and M. Garey. Computers and Intractability: a
guide to the theory of NP-completeness, 1979.

- [BT00] V.D. Blondel and J.N. Tsitsiklis. A survey of computational
complexity results in systems and control. Automatica, 2000.

- [AOPT13] NP-hardness of testing convexity:
http://web.mit.edu/~a_a_a/Public/Publications/convexity_nphard.
pdf

http://web.mit.edu/~a_a_a/Public/Publications/convexity_nphard.pdf

