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Sum of squares optimization is an active area of research at the interface of algorithmic algebra
and convex optimization. Over the last decade, it has made significant impact on both discrete and
continuous optimization, as well as several other disciplines, notably control theory. A particularly
exciting aspect of this research area is that it leverages classical results from real algebraic geometry,
some dating back to prominent mathematicians like Hilbert. Yet, it offers a modern, algorithmic
viewpoint on these concepts, which is amenable to computation and deeply rooted in semidefinite
programming. In this lecture, we give an introduction to sum of squares optimization focusing as
much as possible on aspects relevant to ORF523, namely, complexity and interplay with convex
optimization. A presentation of this length is naturally incomplete. The interested reader is referred
to a very nice and recent edited volume| by Blekherman, Parrilo, and Thomas, the PhD thesis of
Parrilo| or his original paper, the independent papers by |Lasserre| and by Nesterov, the paper by
Shor| (translated from Russian), and the survey papers by Laurent and by Reznick. Much of the
material below can be found in these references.

Polynomial Optimization

For the purposes of this lecture, we motivate the sum of squares machinery through the polynomial
optimization problem:

minimize  p(x) (1)
subject to € K 1= {z € R" | g;(x) > 0, h;(x) = 0},

where p, g;, and h; are multivariate polynomials. A set defined by a finite number of polynomial
inequalities (such as the set K above) is called basic semialgebraic. Of course, we can write K
with polynomial inequalities only (by replacing h;(z) = 0 with h;(x) > 0 and —h;(x) > 0), or
(unlike the case of linear programming) with polynomial equalities only (by replacing g;(z) > 0
with g;(x) — 222 = 0, for some new variables z;). We prefer, however, to keep the general form above
since we will later treat polynomial inequalities and equalities slightly differently.

The special case of problem where the polynomials p, g;, h; all have degree one is of course
linear programming, which we can solve in polynomial time. Unfortunately though, as we will
review in the complexity section of these notes below, the problem quickly becomes intractable
when the degrees increase from one ever so slightly. For example, unconstrained minimization of
a quartic polynomial, minimization of a cubic polynomial over the sphere, or minimization of a
quadratic polynomial over the simplex are all NP-hard.

The sum of squares methodology offers a hierarchy of polynomially sized semidefinite program-
ming relaxations to cope with this computational intractability. It is quite different in philosophy
from the approach taken by, say, the descent methods in nonlinear optimization. In particular, it
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makes absolutely no assumptions about convexity of the objective function p, or the constraint set
K. Nevertheless, the hierarchy has a proof of asymptotic convergence to a globally optimal solution
and in practice often the first few levels of the hierarchy suffice to solve the problem globally.

If we could optimize over nonnegative polynomials...

A point of departure for the sum of squares methodology is the observation that if we could optimize
over the set of polynomials that take nonnegative values over given basic semialgebraic sets, then
we could solve problem globally. To see this, note that the optimal value of problem is equal
to the optimal value of the following problem:

maximize 7y 2)
subject to p(x) —v >0, Vz € K.
Here, we are trying to find the largest constant « such that p(z) — v is nonnegative on the set
K. This formulation suggests the need to think about a few fundamental questions: given a basic
semialgebraic set K as in , what is the structure of the set of polynomials (of, say, some fixed
degree) that take only nonnegative values on K? Can we efficiently optimize a linear functional
over the set of such polynomials? Can we even test membership to this set efficiently?

Observe that independent of the convexity of the set K, the set of polynomials that take
nonnegative values on it form a convex set! Albeit, as we see next, this convex set is not quite
tractable to work with.

Complexity considerationﬂ

We first show that testing membership to the set of polynomials that take nonnegative values over a
basic semialgebraic set K is NP-hard, even when K = R". In order to give a very simple reduction
“from scratch”, we first prove this claim with the word “nonnegative” replaced by “positive”.

Theorem 0.1. Given a polynomial p of degree 4, it is strongly NP-hard to decide if it is positive
definite, i.e., if p(x) > 0 for all x € R™.

Proof. We recall our reduction from ONE-IN-THREE-3SAT. (The reason why we pick this problem
over the more familiar 3SAT is that an equally straightforward reduction from the latter problem
would only prove hardness of positivity testing for polynomials of degree 6.) In ONE-IN-THREE
3SAT, we are given a 3SAT instance (i.e., a collection of clauses, where each clause consists of
exactly three literals, and each literal is either a variable or its negation) and we are asked to
decide whether there exists a {0,1} assignment to the variables that makes the expression true
with the additional property that each clause has exactly one true literal.

To avoid introducing unnecessary notation, we present the reduction on a specific instance.
The pattern will make it obvious that the general construction is no different. Given an instance
of ONE-IN-THREE 3SAT, such as the following

(161 V T2 V .7}4) A (ZZ'Q VI3V .T5) A (i‘l Va3V 55) A (ZL‘l Va3V .1‘4), (3)

You have seen some of these reductions either in previous lectures or on the homework. But I include them here
for completeness/review.



we define the quartic polynomial p as follows:

pl) = Y a(l—mz;)?
+(z1+ (1 —22) + 24 — 1)2 4+ ((1 — 22)
—l—(l — xg) + x5 — 1)2 (4)

+((1 —z1) + 23+ (1 — x5) — 1)?
+(z1 + 73 + 24 — 1)2.

Having done so, our claim is that p(z) > 0 for all z € R® (or generally for all z € R") if and
only if the ONE-IN-THREE 3SAT instance is not satisfiable. Note that p is a sum of squares and
therefore nonnegative. The only possible locations for zeros of p are by construction among the
points in {0,1}°. If there is a satisfying Boolean assignment x to with exactly one true literal
per clause, then p will vanish at point x. Conversely, if there are no such satisfying assignments,
then for any point in {0,1}°, at least one of the terms in will be positive and hence p will have
Nno zeros. O

Deciding if a polynomial p is nonnegative—i.e., if p(x) > 0 for all z € R"—is also NP-hard if
we consider polynomials of degree 4 or higher even degree. A simple reduction is from the matriz
copositivity problem: Given a symmetric matrix M, decide if 27 M2 > 0 for all x > 0. (Note the
similarity to testing matrix positive semidefiniteness, yet the drastic difference in complexity.) To
see the connection to polynomial nonnegativity, observe that the quartic homogeneous polynomial

v(z)" Mu(z),

with v(z) == (22,...,22)7, is nonnegative if and only if M is a copositive matrix.
We already proved NP-hardness of testing matrix copositivity via a reduction from CLIQUE. If
you remember, the main ingredient was the Motzkin-Straus theoremﬂ The stability number a(G)
of a graph G with adjacency matrix A satisfies
! in 2T(A+1)

——— = min =z x.

O[(G) 331'20,2 ;=1
A quadratic programming formulation makes sum of squares techniques directly applicable to the
STABLE SET problem, and in a similar vein, applicable to any NP-complete problem. We end
our complexity discussion with a few remarks.

e The set of nonnegative polynomials and the set of copositive matrices are both examples of
convez sets for which optimizing a linear functional, or even testing membership, is NP-hard.
In view of the common misconception about “convex problems being easy,” it is important to
emphasize again that the algebraic/geometric structure of the set, beyond convexity, cannot
be ignored.

e Back to the polynomial optimization problem in , the reductions we gave above already
imply that unconstrained minimization of a quartic polynomial is NP-hard. The aforemen-
tioned hardness of minimizing a quadratic form over the standard simplex follows e.g. from
the Motzkin-Straus theorem above. Unlike the case of the simplex, minimizing a quadratic
form over the unit sphere is easy. We have seen already that this problem (although non-
convex in this formulation!) is simply an eigenvalue problem. On the other hand, minimizing
forms of degree 3 over the unit sphere is NP-hard, due to a [result of Nesterov.

2We saw this before for the clique number of a graph. This is an equivalent formulation of the theorem for the
stability (aka independent set) number.
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e Finally, we remark that for neither the nonnegativity problem nor the positivity problem did
we claim membership in the class NP or co-NP. This is because these problems are still open!
One may think at first glance that both problems should be in co-NP: If a polynomial has a
z€ero or goes negative, simply present the vector z at which this happens as a certificate. The
problem with this approach is that there are quartic polynomials, such as the following,

p(x) = (x1—2)° + (w2 — 21)* + (w3 — 23)* + -+ + (w0 — 2 _1)%,

for which the only zero takes 2™ bits to write down. Membership of these two problems in the
class NP is much more unlikely. Afterall, how would you give a certificate that a polynomial
is nonnegative? Read on...

Sum of squares and semidefinite programming

If a polynomial is nonnegative, can we write it in a way that its nonnegativity becomes obvious?
This is the meta-question behind Hilbert’s 17th problem. As the title of this lecture suggests, one
way to achieve this goal is to try to write the polynomial as a sum of squares of polynomials.
We say that a polynomial p is a sum of squares (sos), if it can be written as p(z) = Y, ¢?(z) for
some polynomials ¢;. Existence of an sos decomposition is an algebraic certificate for nonnegativity.
Remarkably, it can be decided by solving a single semidefinite program.

Theorem 0.2. A multivariate polynomial p in n variables and of degree 2d is a sum of squares if
and only if there exists a positive semidefinite matriz @ (often called the Gram matriz) such that

p(x) = 2"Qz, (5)

where z is the vector of monomials of degree up to d

7

z= 121,22, ..., &n, T1T2,...,Z0].

Proof. If holds, then we can do a Cholesky factorization on the Gram matrix, Q = VIV, and
obtain the desired sos decomposition as

p(x) = VTV = (VZ)T(VZ) = ||Vz||2.

Conversely, suppose p is sos:
2
%

then for some vectors of coefficients a;, we must have

p= Z(%TZ(GJ))2 =Y (" (@ai)(a] 2(x)) = zT(g;)(Z aia )z (),

(2

so the positive semidefinite matrix Q := )", aiaiT can be extracted. As a corollary of the proof, we

see that the number of squares in our sos decomposition is exactly equal to the rank of the Gram
matrix Q. O

Note that the feasible set defined by the constraints in is the intersection of an affine
subspace (arising from the equality constraints matching the coefficients of p with the entries of

Q) with the cone of positive semidefinite matrices. This is precisely the semidefinite programming
(SDP) problem. The size of the Gram matrix @ is (":lrd) X ("zlrd), which for fixed d is polynomial in

4



n. Depending on the structure of p, there are well-documented techniques for further reducing the
size of the Gram matrix () and the monomial vector z. We do not pursue this direction here but
state as an example that if p is homogeneous of degree 2d, then it suffices to place in the vector z
only monomials of degree exactly d.

Ezxample 0.1. Consider the task proving nonnegativity of the polynomial

p(z) = a1 —6zdwe + 2233 + 62322 + 92322 — 6231013 — 14217922 + 42173
+5x4 — Tr323 + 1623

Since this is a form (i.e., a homogeneous polynomial), we take
2 2 NT
z = (1, T122, T3, T123, T223,3)" .

One feasible solution to the SDP in is given by

1 -3 0 1 0 2
-3 9 0 -3 0 -6
o o 16 0 0 -4
@=11 3 0 2 -1 2
0 0 0 —1 1 0

2 -6 4 2 0 5

Upon a decomposition @ = Zf’zl ala;, with a1 = (1,-3,0,1,0,2)T, ay = (0,0,0,1,-1,0)T, a3 =
(0,0,4,0,0,—1)7, one obtains the sos decomposition

p(x) = (x% — 3x129 + T173 + 256%)2 + (x123 — :E2£C3)2 + (456% - :1:%)2 (6)

A

You are probably asking yourself right now whether every nonnegative polynomial can be writ-
ten as a sum of squares. Did we just get lucky on the above example? Well, from complexity
considerations alone, we know that we should expect a gap between nonnegative and sos polyno-
mials, at least for large n.

In a seminal 1888 paper, Hilbert was the first to show that there exist nonnegative polynomials
that are not sos. In fact, for each combination of degree and dimension, he showed whether such
polynomials do or do not exist. Here is his theorem.

Theorem 0.3. All nonnegative polynomials in n variables and degree d are sums of squares if and
only if

e n=1, or
e d=2, or
e n=2d=4.

The proofs of the first two cases are straightforward (we did them on the board in class). The
contribution of Hilbert was to prove the last case, and to prove that these are the only cases
where nonnegativity equals sos. These results are usually stated in the literature for forms (i.e.,
homogeneous polynomials). Recall that given a polynomial p := p(x1,...,z,) of degree d, we can
homogenize it by introducing one extra variable

i@, y) == ydp<§>,



and then recover p back by dehomogenizing py:

p(z) = pu(z,1).

We proved in a previous lecture the simple fact that the property of being nonnegative is preserved
under both operations. It is an easy exercise to establish the same claim for the property of being
sos. As a result, the result of Hilbert is equivalent to the following statement:

All nonnegative forms in n variables and degree d are sums of squares if and only if

e n=2 or
e d=2, or
e n=23d=4.

Since all nonnegative ternary quartic forms are sos, we see that we did not really get lucky in
the example we gave above. The same would have happened for any other nonnegative quartic
form in three variables!

Hilbert’s proof of existence of nonnegative polynomials that are not sos was not constructive.
The first explicit example interestingly appeared nearly 80 years later and is due to Motzkin:

M (21,22, x3) = 2i23 + xieh — 3xixdal + 5. (7)
Nonnegativity of M follows from the arithmetic-geometric inequality:

x‘lla:% + x%xé‘ + xg
3

> x%x%m%

Non-existence of an sos decomposition can be shown by assuming a decomposition M = > q? (with
each ¢; being a ternary form of degree 3), comparing coefficients, and reaching a contradiction. (We
did this on the board in class). Alternatively, we could show that the Motzkin polynomial is not
sos, by proving that the underlying SDP from Theorem is infeasible.

From an application viewpoint, the good news for sum of squares optimization is that con-
structing polynomials of the type in is not a trivial task. This is especially true if additional
structure is required on the polynomial. For example, the following problem is still open.

Open problem. Construct an explicit example of a conver, nonnegative polynomial that is not
a sum of squares.

This question is due to Parrilo. The motivation behind it is the following: we would like to
understand whether sos optimization is exact for the special case of convex polynomial optimization
problems. Blekherman has shown| with non-constructive arguments that such “bad” convex poly-
nomials must exist when the degree is four or larger and the number of variables goes to infinity.
However, we do not know the smallest (or any reasonable) dimension for which this is possible and
lack any explicit examples. For the reader interested in tackling this problem, it is known that
any such convex polynomial must necessarily be not “sos-convex”. Roughly speaking, sos-convex
polynomials are convex polynomials whose convexity is certified by an appropriately defined sum of
squares identity. Examples of convex but not sos-convex polynomials have recently appeared and
a characterization of the degrees and dimensions where they exist is now available. Interestingly,
this characterization coincides with that of Hilbert, for reasons that are also not fully understood;
see Chapter 3 of our [thesis.
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Having shown that not every nonnegative polynomial is a sum of squares of polynomials, Hilbert
asked in his 17th problem whether every such polynomial can be written as a sum of squares of
rational functions. Artin answered the question in the affirmative in 1927. As we will see next,
such results allow for a hierarchy of semidefinite programs that approximate the set of nonnegative
polynomials better and better.

Positivstellensatz and the SOS hierarchy

Consider proving a statement that we all learned in high school:
Va,b,c,z, ax? +bx +c=0=b*>—4ac > 0.

Just for the sake of illustration, let us pull an algebraic identity out of our hat which certifies this
claim:
b’ — dac = (2ax + b)? — 4a(az® + bz + c). (8)

Think for a second why this constitutes a proof. The Positivstellensatz is a very powerful algebraic
proof system that vastly generalizes what we just did here. It gives a systematic way of certifying
infeasibility of any system of polynomial equalities and inequalities over the reals. Sum of squares
representations play a central role in it. (They already did in our toy example above if you think
about the role of the first term on the right hand side of ) Modern optimization theory adds
a wonderfully useful aspect to this proof system: we can now use semidefinite programming to
automatically find suitable algebraic certificates of the type in .

The Positivstellensatz is an example of a theorem of the alternative. We have already seen some
results of this type, for example, the Farkas Lemma (1902) of linear programming,

“a system of linear (in)equalities Az + b = 0,Cx + d > 0 is infeasible over the reals

)
there exist A > 0, u such that ATy +CTA=0,0Tp+d"\= -1
or our beloved S-lemma,

“under mild regularity assumptions, a system of two quadratic inequalities
q1(x) > 0,g2(x) <0

is infeasible over the reals
2

there exist a scalar A > 0 and affine polynomials g; such that ¢o — Ag1 =), g7

Another famous theorem of this type is Hilbert’s (weak) Nullstellensatz (1893),

“a system of polynomial equations f;(z) = 0 is infeasible over the complex numbers

)
there exist polynomials ¢;(z) such that ). t;(2) fi(z) = —1,”

All these theorems typically have an “easy” (well, trivial) direction and a “hard” direction. The
same is true for the Positivstellensatz.



Theorem 0.4 (Positivstellensatz — Stengle (1974)). The basic semialgebraic set
K:={xeR" | gi(x)>0,i=1,...,m,hi(x) =0,i=1,...,k} is empty

)

there exist polynomials t1, ..., t; and sum of squares polynomials sg, S1, ..., Sm, S12,513, - - - , Sm—1m,
81235+« Sm—2m—1m, - - -, S812..m Such that

-1 = fgti(x)hi(x)+so(x)—i—%si(x)gi(w)

Y si(@gi@)gi @)+ X sir(@)gil@)g;(@)gi () ©)
{ig} {i.g.k}
+ -+ 31...m(x)gi(x) s gm(‘r)

The number of terms in this expression is finite since we never raise any polynomial g; to
a power larger than one. The sum of squares polynomials s; ; are of course allowed to be the
zero polynomial, and in practice many of them often are. There are bounds in the literature on
the degree of the polynomials t;, s;.;, but of exponential size as one would expect for complexity
reasons. There is substantial numerical evidence, however, from diverse application areas, indicating
that in practice (whatever that means) the degrees of these polynomials are usually quite low. We
remark that the Positivstellensatz is a very powerful result. For example, it is a good exercise
to show that the solution to Hilbert’s 17th problem follows as a straightforward corollary of this
theorem.

Under minor additional assumptions, refined versions of the Positivstellensatz we presented are
available. The two most well-known are perhaps due to Schmiidgen and Putinar. For example,
Putinar’s Positivstellensatz states that if the set K satisfies the so-called Archimedean property
(a property slightly stronger than compactness), then emptiness of K guarantees a representation
of the type @D, where the second and third line are scratched out; i.e., there is no need to take
products of the constraints g;(z) > 0. While this may look like a simplification at first, there is a
tradeoff: the degree of the sos multipliers s; may need to be higher in Putinar’s representation than
in Stengle’s. This makes intuitive sense as the proof system needs to additionally prove statements
of the type g; > 0,g; > 0 = g;g; > 0, while in Stengle’s representation this is taken as an axiom.

SOS hierarchies. Positivstellensatz results form the basis of sos hierarchies of Parrilo and
Lasserre for solving the polynomial optimization problem . The two approaches only differ
in the version of the Positivstellensatz they use (originally, Parrilo’s paper follows Stengle’s ver-
sion and Lasserre’s follows Putinar’s), and the fact that Lasserre presents the methodology from
the dual (but equivalent) viewpoint of moment sequences. In either case though, the basic idea is
pretty simple. We try to obtain the largest lower bound for problem , by finding the largest ~y for
which the set {x € K,p(x) <~} is empty. We certify this emptiness by finding Positivstellensatz
certificates. In level [ of the hierarchy, the degree of the polynomials ¢; and the sos polynomails s; in
@ is bounded by [. As [ increases, the quality of the lower bound monotonically increases, and for
each fixed [, the search for the optimal +, and the polynomials t;, s; is a semidefinite optimization
problem (possibly with some bisection over 7).

Application to MAXCUT

One of the most famous applications of semidefinite programming to combinatorial optimization is
the beautiful algorithm Goemans and Williamson for MAXCUT which produces an approximation



ratio of 0.878. This algorithm (covered in one of our other lectures) has two steps: first we solve a
semidefinite program, then we perform a rather clever randomized rounding step. In this section
we focus only on the first step. We show that even low degree Positivstellensatz refutations can
produce stronger bounds than the standard SDP relaxation.

Consider the 5-cycle with all edge weights equal to one. It is easy to see that the MAXCUT
value of this graph is equal to 4. However, the standard SDP relaxation (i.e. the one used in the
Goemans and Williamson algorithm) produces an upper bound of %(\/5 +5) &~ 4.5225.

The MAXCUT value of the 5-cycle is equal to minus the optimal value of the quadratic program

minimize %(mlwg + xox3 + T3T4 + T4x5 + T1T5) — %
subject to wzz =1, +=1,...,5.

We will find the largest constant ~ such that the objective function minus ~ is algebraically
certified to be nonnegative on the feasible set. To do this, we solve the sos optimization problem

maximize 7y

5
such that %(33‘1.1)2 + xox3 + X314 + T4w5 + T1X5) — % -7+ > tl(l‘)(.ﬁg —1) is sos.
i=1
The decision variables of this problem are the constant v and the coefficients of the polynomials
t;(x), which in this case we parametrize to be quadratic functions. This sos program results in a
polynomially sized semidefinite optimization problem via Theorem The optimal value of the
program is —4; i.e., we have solved the MAXCUT instance exactly.
You may be wondering, “can we show that a certain level of the sos hierarchy combined with an
appropriately designed rounding procedure produces an approximation ratio of better than 0.8787”
Let’s just say that if you did this, you would probably become an overnight celebrity.

Software

There are very nice implementations of sum of squares optimization solvers that automate the
process of setting up the resulting semidefinite programs. The interested reader may want to play
around with SOSTOOLS|, YALMIP) or GloptiPoly. We have already posted some MATLAB demo
files to familiarize you with YALMIP.

Impact

While we focused in this lecture on the polynomial optimization problem, the impact of sum
of squares optimization goes much beyond this area. In dynamics and control, sos optimization
has enabled a paradigm shift from classical linear control to an efficient framework for design of
nonlinear controllers that are provably safer, more agile, and more robust. Papers on applications
of sos optimization have appeared in areas as diverse as quantum information theory, robotics,
geometric theorem proving, formal verification, derivative pricing, stochastic optimization, and
game theory, among others. In theoretical computer science, sos techniques are currently a subject
of intense study. You will see some of these applications in future lectures, homework, or the final
exam ;) If you are an ORFE student and still not convinced that this SOS business is actually
useful, you may find relief in knowing that SOS is in fact the core discipline of ORFE ;)
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