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Instructor: A.A. Ahmadi

Scribe: G. Hall Monday, April 25, 2016

When in doubt on the accuracy of these notes, please cross check with the instructor’s notes,

on aaa. princeton. edu/ orf523 . Any typos should be emailed to gh4@princeton.edu.

In this lecture, we give a brief introduction to

• robust optimization (Section 1)

• robust control (Section 2).

1 Robust optimization

“To be uncertain is to be uncomfortable, but to be certain is to be ridiculous.”

Chinese proverb [1].

• So far in this class, we have assumed that an optimization problem is of the form

min.
x

f(x)

gi(x) ≤ 0, i = 1, . . . , n,

hj(x) = 0, j = 1, . . . ,m,

where f, gi, hj are exactly known. In real life, this is most likely not the case; the

objective and constraint functions are often not precisely known or at best known with

some noise.

• Robust optimization is an important subfield of optimization that deals with uncer-

tainty in the data of optimization problems. Under this framework, the objective and

constraint functions are only assumed to belong to certain sets in function space (the

so-called “uncertainty sets”). The goal is to make a decision that is feasible no matter

what the constraints turn out to be, and optimal for the worst-case objective function.
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1.1 Robust linear programming

• In this section, we will be looking at the basic case of robust linear programming. We

will consider two types of uncertainty sets: polytopic and ellipsoidal.

• A robust LP is a problem of the form:

min.
x

cTx (1)

s.t. aTi x ≤ bi, ∀ai ∈ Uai , ∀bi ∈ Ubi , i = 1, . . . ,m,

where Uai ⊆ Rn and Ubi ⊆ R are given uncertainty sets.

• Notice that with no loss of generality we are assuming that there is no uncertainty in

the objective function. This is because of the following equations

min.
x

max.
c∈Uc

cTx

s.t. aTi x ≤ bi, ∀ai ∈ Uai , ∀bi ∈ Ubi , i = 1, . . . ,m.

m
min.
x,α

α

cTx ≤ α, ∀c ∈ Uc
aTi x ≤ bi, ∀ai ∈ Uai , ∀bi ∈ Ubi , i = 1, . . . ,m.

1.1.1 Robust LP with polytopic uncertainty

• This is the special case of the previous problem where Uai and Ubi are polyhedra; i.e.,

Uai = {ai| Diai ≤ di},

where Di ∈ Rki×n and di ∈ Rki are given to us as input. Similarly, each Ubi is a given

interval in R.

• Clearly, we can get rid of the uncertainty in bi because the worst-case scenario is

achieved at the lower end of the interval. So our problem becomes

min.
x

cTx (2)

s.t. aTi x ≤ bi, ∀ai ∈ Uai , i = 1, . . . ,m,
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where Uai = {ai| Diai ≤ di} With some abuse of notation, we are reusing bi to denote

the lower end of the interval:

(a) Feasible set of an LP with no uncertainty (b) Feasible set of an LP with polytopic uncertainty

The linear program (2) can be equivalently written as

min.
x

cTx

s.t.

[
max.

ai
aTi x

Diai ≤ di

]
≤ bi, i = 1, . . . ,m. (3)

Our strategy will be to change the min-max problem to a min-min problem to combine the

two minimization problems. To do this, we take the dual of the inner optimization problem

in (3), which is given by

min.
pi∈Rki

pTi di

DT
i pi = x

pi ≥ 0.
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By strong duality, both problems have the same optimal value so we can replace (3) by

min.
x

cTx

s.t.


min.
pi∈Rki

pTi di

DT
i pi = x

pi ≥ 0

 ≤ bi, i = 1, . . . ,m. (4)

But this is equivalent to

min.
x,pi

cTx

s.t. pTi di ≤ bi, i = 1, . . . ,m (5)

DT
i pi = x, i = 1, . . . ,m,

pi ≥ 0, i = 1, . . . ,m.

This equivalence is very easy to see: suppose we have an optimal x, p for (5). Then x is also

feasible for (4) and the objective values are the same. Conversely, suppose we have an opti-

mal x for (4). As x is feasible for (4), there must exist p verifying the inner LP constraint.

Hence, (x, p) would be feasible for (5) and would give the same optimal value.

Duality has enabled us to solve a robust LP with polytopic uncertainty just by solving a

regular LP.

1.1.2 Robust LP with ellipsoidal uncertainty

We consider again an LP of the form (2) (i.e., no uncertainty in bi), but this time we have

Uai = {āi + Piu| ||u||2 ≤ 1}, i = 1, . . . ,m,

where Pi ∈ Rn×n and āi ∈ Rn, i = 1, . . . ,m are part of the input.

• The sets Uai are ellipsoids, which gives the name ellipsoidal uncertainty to this type of

uncertainty.

• If Pi = I, then the uncertainty sets are exactly spheres.

• If Pi = 0, then ai is fixed, and there is no uncertainty.
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Once again, we can formulate our problem as

min.
x

cTx (6)

s.t.

[
max.

ai
aTi x

ai ∈ Uai

]
≤ bi, i = 1, . . . ,m.

This time, the interior maximization problem has an explicit solution, which makes the

problem easier. Indeed,

max{aTi x| ai ∈ Uai} = āi
Tx+ max{uTP T

i x| ||u||2 ≤ 1}
= āi

Tx+ ||P T
i x||2,

where the last equality is due to Cauchy-Schwarz applied to u and P T
i x. Then, problem (6)

can be rewritten as

min.
x

cTx

s.t. āi
Tx+ ||P T

i x||2 ≤ bi

which is an SOCP! Hence, a robust LP with ellipsoidal uncertainty can be solved efficiently

by solving a single SOCP.

1.2 Robust SOCP with ellipsoidal uncertainty

Robust optimization is not restricted to linear programming. Many results are available for

robust counterparts of other convex optimization problems with various types of uncertainty

sets. For example, the robust counterpart of an uncertain SOCP (and hence an uncertain

convex QCQP) with ellipsoidal uncertainty sets can be formulated as an SDP [3, Section 4.5].

Unfortunately, the robust counterpart of convex optimization problems does not always

turn out to be a tractable problem. For example, the robust counterpart of an SOCP with

polyhedral uncertainty is NP-hard [5], [2], [4]. Similarly, the robust counterpart of SDPs

with pretty much any type of uncertainty is NP-hard. For example, even the following basic

question is NP-hard [7]: given lower and upper bounds on entries of a matrix lij ≤ Aij ≤ uij,

is it true that all matrices in the family are positive semidefinite?

A good survey on tractability of robust counterparts of convex optimization problems is by

Bertsimas et al. [5].
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2 Robust stability of linear systems

In this section, we present one of the most basic and fundamental problems in robust control,

namely, the problem of deciding robust stability of a linear system. Recall from our previous

lectures that given a matrix A ∈ Rn×n, the linear dynamical system

xk+1 = Axk,

is globally asymptotically stable (GAS) if and only if

ρ(A) < 1,

where ρ(A) is the spectral radius of A. We also saw that this is the case if and only if

∃P � 0 s.t. ATPA ≺ P.

For simplicity, let us call a matrix A with ρ(A) < 1 a stable matrix.

We now consider a related problem: we would like to study the stability of a linear system but

when the matrix A is not exactly known. A common model for accounting for uncertainty

in A is the following. We assume we know that

A ∈ A := conv(A1, . . . , Am), (7)

where A1, . . . , Am are given n×n matrices. If all matrices A ∈ A are stable, then the system

is said to be robustly stable.

Example: A population model of Sumatran tigers

Source: worldwildlife.org
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A team of biologists has established that the growth dynamic of the population of Sumatran

tigers is described by the following model:
x1k+1

x2k+1

x3k+1
...

xnk+1

 =


a11 a12 a13 . . . a1n

a21 0 0 . . . 0

0 a32 0 . . . 0
...

. . . . . .
...

0 . . . . . . an,n−1 0




x1k
x2k
x3k
...

xnk


In this model, the population is divided into n age groups in increasing order. The vari-

able xik denotes the number of individuals in age group i (e.g., 5-10 years) during the kth

year. The dynamic equation given above relates the number of individuals alive (in each age

group) during year (k + 1) to the number of individuals alive in year k. The structure of A

is intuitive: at each time stage, only a fraction a(i+1)i of people in age group i make it to

the age group i + 1. At the same time, each age group i contributes a fraction a1i to the

newborns in the next stage. Given these dynamics, the biologists would like to determine

whether it is likely that this particular breed of tigers will go extinct.

This is a usual linear system of the type xk+1 = Axk. If the matrix A was perfectly known

to the scientists, then they would be able to determine whether the tigers would go extinct,

based on the spectral radius of A. However, in this case, the biologists have two different

estimates of A at their disposal, denoted by A1 and A2, which come from two different

teams of field biologists (one team is in Sumatra and one in Borneo). As both teams usually

produce reliable work, they do not know which matrix to use for their computations and

wonder if the following is true: if A1 and A2 are stable, is θA1 + (1− θ)A2 stable ∀θ ∈ [0, 1]?

In other words, is the system robustly stable?

The answer is actually negative! Stability of A1, . . . , Am does not imply robust stability; i.e.,

stability of the convex hull in (7). This can be seen in the following example. Consider

A1 =

0.2 0.3 0.7

0.9 0 0

0 0.8 0

 , A2 =

0.3 0.9 0.4

0.5 0 0

0 0.9 0

 ,

we have ρ(A1) = 0.9887 < 1 and ρ(A2) = 0.9621 < 1, so both matrices are stable. But if we
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take θ = 3
5

then

3

5
A1 +

2

5
A2 =

0.24 0.54 0.58

0.74 0 0

0 0.84 0


is not stable as it has spectral radius ρ = 1.0001 > 1.

In fact, determining when the system is robustly stable is NP-hard (see [7]). However, there

are efficiently checkable sufficient conditions for this property.

Lemma 1. Let A1, . . . , Am ∈ Rn×n. If there exists a matrix P � 0 s.t.

ATi PAi ≺ P, i = 1, . . . ,m, (8)

then ρ(A) < 1, ∀A ∈ A.

Proof: Let

A =
∑
i

αiAi,

where αi ≥ 0, i = 1, . . . ,m and
∑

i αi = 1. If there exists P � 0 such that

ATi PAi ≺ P, ∀i = 1, . . .m,

then, by taking the Schur complement, we get the LMIs[
P ATi
Ai P−1

]
� 0, i = 1, . . . ,m.

Multiplying by αi ≥ 0 on both sides and summing, we get[
P AT

A P−1

]
� 0,

which implies that P � 0 and ATPA ≺ P , using the Schur complement again. Hence, A is

stable. �

Note that the LMIs in (8) are sufficient but not necessary for robust stability. There are

indeed better LMI-based sufficient conditions for robust stability in the literature.
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Notes

Further reading for this lecture can include the survey paper on robust optimization in [5]

or an early paper on the topic by some people you know [6] ;)
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