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Concluding remarks
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Convex relaxations with worst-case guarantees
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One way to cope with NP-hardness is to aim for suboptimal solutions with 
guaranteed accuracy

We argued that convex relaxations provide a powerful tool for this task

Reminder:

For randomized algorithms, require this in expectation.



General recipe for convex optimization based approx. algs.
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Relax

Round

Bound



Last time: 2-approximation for vertex cover via LP
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Solve its LP relaxation, then round:



Today: MAXCUT
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Examples with edge 
costs equal to 1:

MAXCUT is NP-complete (e.g., relatively easy reduction from 3SAT)

Contrast this to MINCUT which can be solved in poly-time by LP

Cut value=8

Cut value=23
(optimal)



A .878-approximation algorithm for MAXCUT via SDP
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Seminal work of Michel Goemans and David Williamson (1995)

Before that the best approximation factor was ½

First use of SDP in approximation algorithms

Still the best approximation factor to date

An approximation ratio better than 16/17=.94 implies P=NP (Hastad)

Under stronger complexity assumptions, .878 is optimal

No LP-based algorithm is known to match the SDP-based 0.878 bound



The GW SDP relaxation
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It’s SDP relaxation:



The GW rounding
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The GW bound
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The GW bound
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Relating this to the SDP optimal value
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The final step
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Bound term by term. You achieve this approximation ratio.
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(By D.E. Knuth)
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Limits of 
computation



What theory of NP-completeness established for us
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Recall that all NP-complete problems polynomially reduce to each other.

If you solve one in polynomial time, you solve ALL in polynomial time.

What’s coming next: limits of computation in general
(and under no assumptions)



Matrix mortality
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We say the collection is mortal if there is a finite product out of the matrices (possibly 
allowing repetition) that gives the zero matrix.

Example 1:

Example from [W11].

Mortal.



Matrix mortality
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We say the collection is mortal if there is a finite product out of the matrices (possibly 
allowing repetition) that gives the zero matrix.

Example 2:

Not mortal. (How to prove that?)

• In this case, can just observe that all three matrices have 
nonzero determinant.

• Determinant of product=product of determinants.

But what if we aren’t so lucky?



Matrix mortality

18

MATRIX MORTALITY  

• This means that there is no finite time algorithm that can take as input two 21x21 
matrices (or seven 3x3 matrices) and always give the correct yes/no answer to the 
question whether they are mortal.

• This is a definite statement.
(It doesn’t depend on complexity assumptions, like P vs. NP or alike.)

• How in the world would someone prove something like this?

• By a reduction from another undecidable problem!



The Post Correspondence Problem (PCP)
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Given a set of dominos such as the ones above,
can you put them next to each other (repetitions allowed) in such a 
way that the top row reads the same as the bottom row?

Emil Post
(1897-1954)

Answer to this instance is YES:



The Post Correspondence Problem (PCP)
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What about this instance?
Emil Post
(1897-1954)

Answer is NO. Why?

There is a length mismatch, unless we only use (3), which is not good enough.

But what if we aren’t so lucky?



The Post Correspondence Problem (PCP)
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Emil Post
(1897-1954)

PCP



Reductions
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• There is a rather simple reduction from PCP to MATRIX MORTALITY;
see, e.g., [Wo11].

• This shows that if we could solve MATRIX MORTALITY in 
finite time, then we could solve PCP in finite time.

• It’s impossible to solve PCP in finite time (because of 
another reduction!)

• Hence, it’s impossible to solve MATRIX MORTALITY in 
finite time.

• Note that these reductions only need to be finite in 
length (not polynomial in length like before).



Integer roots of polynomial equations
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Fermat’s last theorem tells us the 
answer is NO to all these 
instances.

Sure:

And there are infinitely many more…

How about 

How about 

How about 



Integer roots to polynomial equations

24Source: [Po08]

YES: (3,1,1)

But answer is YES!!

No one knows!



Integer roots of polynomial equations
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POLY INT

• Hilbert’s 10th problem (1900): Is there an algorithm for POLY INT?
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• Matiyasevich (1970) – building on earlier work by Davis, 
Putnam, and Robinson:
No! The problem is undecidable.



Real/rational roots of polynomial equations
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• If instead of integer roots, we were testing existence of real roots, then 
the problem would become decidable. 

– Such finite-time algorithms were developed in the past century 
(Tarski–Seidenberg )

• If instead we were asking for existence of rational roots,

– We currently don’t know if it’s decidable!

• Nevertheless, both problems are NP-hard. For example for

– A set of equations of degree 2

– A single equation of degree 4.

– Proof on the next slide.



A simple reduction
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• We give a simple reduction from STABLE SET to 
show that testing existence of a real (or 
rational or integer) solution to a set of 
quadratic equations is NP-hard. 

• Contrast this to the case of linear equations 
which is in P.

• How would you go from here to a single equation of degree 4?



Tiling the plane
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• Given a finite collection of tile 
types, can you tile the 2-
dimenstional plane such that the 
colors on all tile borders match.

• Cannot rotate or flip the tiles.

• The answer is YES, for the 
instance presented.

• But in general, the problem is 
undecidable.



Stability of matrix pairs
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We say a matrix A is stable if all its eigenvalues are strictly inside the unit circle in the 
complex plane.

We say a pair of matrices {A1, A2} is stable if all matrix products out of A1 and A2 are 
stable.

Given {A1,A2}, let a* be the largest scalar such that the pair {aA1,aA2} is stable for all 
a<a*.

Define r(A1,A2) to be 1/a*.

For a single matrix A, r(A) is the same thing as the spectral radius and can be 
computed in polynomial time.

STABLE MATIRX PAIR: Given a pair of matrices A1,A2, decide if r(A1,A2)<=1?

THM. STABLE MATRIX PAIR is undecidable already for 47x47 matrices.



All undecidability results are proven via reductions
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But what about the first undecidable problem?



The halting problem
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HALTING

An instance of HALTING:



The halting problem
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An instance of HALTING:

• We’ll show that the answer is no!

• This will be a proof by contradiction.



The halting problem is undecidable
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Proof.

• Suppose there was such a program terminates(p,x).

• We’ll use it to create a new program paradox(z):

function paradox(z)

1: if terminates(z,z)==1 goto line 1.

• What happens if we run paradox(paradox) ?!

– If paradox halts on itself, then paradox doesn’t halt on itself.

– If paradox doesn’t halt on itself, then paradox halts on itself.

– This is a contradiction terminates can’t exist.



The halting problem (1936)
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Alan Turing 
(1912-1954)



Self-reference – a simpler example 
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Russell’s paradox



The power of reductions (one last time)
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A simple paradox/puzzle:

A fundamental 
algorithmic question:

(lots of nontrivial mathematics,

including the formalization of the 
notion of an “algorithm”)

POLY INT



A remarkable implication of this…
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In each case, you can explicitly write down a polynomial of degree 4 in 58 variables, 
such that if you could decide whether your polynomial has an integer root, you would 
have solved the open problem.

Proof.

1) Write a code that looks for a counterexample.

2) Code does not halt if and only if the conjecture is true (one instance of the halting 
problem!)

3) Use the reduction to turn into an instance of POLY INT.

Consider the following long-standing open problems in mathematics (among numerous 
others!):

Is there an odd perfect number? (an odd number whose proper divisors add up to itself)

Is every even integer larger than 2 the sum of two primes? (The Goldbach conjecture)



How to deal with undecidability?
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Convex optimization!

Well we have only one tool in this class:



Stability of matrix pairs
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We say a matrix A is stable if all its eigenvalues are strictly inside the unit circle on the 
complex plane.

We say a pair of matrices {A1, A2} is stable if all matrix products out of A1 and A2 are 
stable.

Given {A1,A2}, let a* be the largest scalar such that the pair {aA1,aA2} is stable for all 
a<a*.

Define r(A1,A2) to be 1/a*.

For a single matrix A, r(A) is the same thing as the spectral radius and can be 
computed in polynomial time.

STABLE MATIRX PAIR: Given a pair of matrices A1,A2, decide if r(A1,A2)<=1?

THM. STABLE MATRIX PAIR is undecidable already for 47x47 matrices.
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Common Lyapunov function

If we can find a function

such that
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then, the matrix family is stable. 

Such a function always exists! But may be extremely difficult to find!!
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Computationally-friendly common Lyapunov functions

If we can find a function

such that

then the matrix family is stable.

Common quadratic Lyapunov function:
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SDP-based approximation algorithm!

Exact if you have a single matrix (we proved this).

For more than one matrix:
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Proof idea

Upper bound:

 Existence of a quadratic Lyapunov function sufficient for stability 

Lower bound (due to Blondel and Nesterov):

 We know from converse Lyapunov theorems that there always exist a Lyapunov 
function which is a norm

 We are approximating the (convex) sublevel sets of this norm by ellipsoids

 Apply John’s ellipsoid theorem (see Section 8.4 of Boyd&Vandenberghe)



How can we do better than this SDP?
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Why look only for quadratic Lyapunov functions?

Look for higher order polynomial Lyapunov functions and apply our the SOS 
relaxation!



Common SOS Lyapunov functions
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SOS-based approximation algorithm!
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SOS-based approximation algorithm!
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Comments:

For 2d=2, this exactly reduces to our previous SDP! 
(SOS=nonnegativity for quadratics!)

We are approximating an undecidable quantity to arbitrary accuracy 
in polynomial time!!

In the past couple of decades, approximation algorithms have been 
actively studied for a multitude of NP-hard problems. There are 
noticeably fewer studies on approximation algorithms for 
undecidable problems. 

In particular, the area of integer polynomial optimization seems to 
be wide open.



Main messages of the course
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Main messages of the course
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Which optimization problems are tractable?

 Convexity is a good rule of thumb.

 But there are nonconvex problems that are easy (SVD, S-lemma, etc.)

 And convex problems that are hard (testing matrix copositivity or polynomial nonnegativity).

 In fact, we showed that every optimization problem can be “written” as a convex problem.

 Computational complexity theory is essential to answering this question!

Hardness results

 Theory of NP-completeness: gives overwhelming evidence for intractability of many optimization 
problems of interest (no polynomial-time algorithms)

 Undecidability results rule out finite time algorithms unconditionally

Dealing with intractable problems

 Solving special cases exactly

 Looking for bounds via convex relaxations

 Approximation algorithms



Main messages of the course

50



The take-home final
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Will go live on Thursday, May 5, at 9AM.

Will be due on Tuesday, May 10, 11 AM in the ORF 523 box in Sherrerd 123.

We are planning for ~5,6 problems. 

Please use Piazza for clarification questions!

Office hours next week:

 Georgina: Monday, 5-7 PM.

 Amirali: Tuesday, 6-8 PM.

 Come with your questions!

If you’ve been doing the problem sets and following lecture, you should be OK 



Some open problems that came up in this course
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1) Compute the Shannon capacity of C7. More generally, give better SDP-based upper 
bounds on the capacity than Lovasz.

(Many are high-risk (and high-payoff))



Some open problems that came up in this course
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2) Is there a polynomial time algorithm for output feedback stabilization?



Some open problems that came up in this course
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3) Can you find a local minimum of a quadratic program in polynomial time?

4) Construct a convex, nonnegative polynomial that is not a sum of squares.

5) Can you beat the GW 0.878 algorithm for MAXCUT?

Check your license plate, you never know!

Thank you!
AAA

April 28, 2016
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