
ORF 523 Lecture 3 Spring 2016, Princeton University

Instructor: A.A. Ahmadi

Scribe: G. Hall Thursday, February 11, 2016

When in doubt on the accuracy of these notes, please cross check with the instructor’s notes,

on aaa. princeton. edu/ orf523 . Any typos should be emailed to gh4@princeton.edu.

Today, we cover the following topics:

• Local versus global minima

• Unconstrained optimization and some of its applications

• Optimality conditions:

– Descent directions and first order optimality conditions

– An application: a proof of the arithmetic mean/geometric mean inequality

– Second order optimality conditions

• Least squares

1 Basic notation and terminology in optimization

1.1 Optimization problems

An optimization problem is a problem of the form

min. f(x)

s.t. x ∈ Ω,
(1)

where f is a scalar-valued function called the objective function, x is the decision variable,

and Ω is the constraint set (or feasible set). The abbreviations min. and s.t. are short for

minimize and subject to respectively. In this class (unless otherwise stated) we always have

f : Rn → R,Ω ⊆ Rn.

Typically, the set Ω is given to us in functional form:

Ω = {x ∈ Rn | gi(x) ≥ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . , k},

for some functions gi, hj : Rn → R. This is especially the case when we speak of algorithms

for solving optimization problems and need explicit access to a description of the set Ω.
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1.2 Optimal solution

• An optimal solution x∗ (also referred to as the “solution”, the “global solution”, or the

“argmin of f over Ω”) is a point in Ω that satisfies:

f(x∗) ≤ f(x),∀x ∈ Ω.

• An optimal solution may not exist or may not be unique.

Figure 1: Possibilities for existence and uniqueness of an optimal solution

1.3 Optimal value

• The optimal value f ∗ of problem (1) is the infimum of f over Ω. If an optimal solution

x∗ to (1) exists, then the optimal value f ∗ is simply equal to f(x∗).

• An important case where x∗ is guaranteed to exist is when f is continuous and Ω is

compact, i.e., closed and bounded. This is known as the Weierstrass theorem. See

also Lemma 2 in Section 2.2 for another scenario where the optimal solution is always

achieved.

• In the lower right example in Figure 1, the optimal value is zero even though it is not

achieved at any x.
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• If we want to maximize an objective function instead, it suffices to multiply f by −1

and minimize −f . In that case, the optimal solution does not change and the optimal

value only changes sign.

1.4 Local and global minima

Consider optimization problem (1). A point x̄ is said to be a

• local minimum, if x̄ ∈ Ω and if ∃ε > 0 s.t. f(x̄) ≤ f(x), ∀x ∈ B(x̄, ε) ∩ Ω.

• strict local minimum if x̄ ∈ Ω and if ∃ε > 0 s.t. f(x̄) < f(x), ∀x ∈ B(x̄, ε)∩Ω, x 6= x̄.

• global minimum if x̄ ∈ Ω and if f(x̄) ≤ f(x),∀x ∈ Ω.

• strict global minimum if x̄ ∈ Ω and if f(x̄) < f(x), ∀x ∈ Ω, x 6= x̄.

Notation: Here, B(x̄, ε) := {x| ||x− x̄|| ≤ ε}. We use the 2-norm in this definition, but any

norm would result in the same definition (because of equivalence of norms in finite dimen-

sions).

We can define local/global maxima analogously. Notice that a (strict) global minimum is of

course also a (strict) local minimum, but in general finding local minima is a less ambitious

goal than finding global minima. Luckily, there are important problems where we can find

global minima efficiently.

On the other hand, there are also problems where finding even a local minima is intractable.

We will prove the following theorems later in the course:

Theorem 1. Consider problem (1) with Ω = Rn. Given a smooth objective function f (even

a degree-4 polynomial), and a point x̄ in Rn, it is NP-hard to decide if x̄ is a local minimum

or a strict local minimum of (1).

Theorem 2. Consider problem (1) with Ω defined as a set of linear inequalities. Then, given

a quadratic function f and a point x̄ ∈ Rn, it is NP-hard to decide if x̄ is a local minimum

of (1).

Next, we will see a few optimality conditions that characterize local (and sometimes global)

minima. We start with the unconstrained case.
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Figure 2: An illustration of local and global minima in the unconstrained case.

2 Unconstrained optimization

Unconstrained optimization corresponds to the case where Ω = Rn. In other words, the

problem under consideration is

min
x
f(x).

Although this may seem simple, unconstrained problems can be far from trivial. They also

appear in many areas of application. Let’s see a few.

2.1 Applications of unconstrained optimization

• Example 1: The Fermat-Weber facility location problem. Given locations z1, . . . , zm

of households (in Rn), the question is where to place a new grocery store to minimize

total travel distance of all customers:

min
x∈Rn

m∑
i=1

||x− zi||

• Example 2: Least Squares. There are very few problems that can match least squares in

terms of ubiquity of applications. The problem dates back to Gauss: Given A ∈ Rm×n,

4



b ∈ Rm, we are interested in solving the unconstrained optimization problem

min
x
||Ax− b||2.

Typically, m >> n. Let us mention a few classic applications of least squares.

– Data fitting: We are given a set of points (xi, yi), i = 1, . . . , N on the plane and

want to fit a (let’s say, degree-3) polynomial p(x) = c3x
3 + c2x

2 + c1x+ c0 to this

data that minimizes the sum of the squares of the deviations. This, and higher

dimensional analogues of it, can be written as a least squares problem (why?).

Figure 3: Fitting a curve to a set of data points

– Overdetermined system of linear equations: Imagine a very simple linear

prediction model for the stock price of a company

s(t) = a1s(t− 1) + a2s(t− 2) + a3s(t− 3) + a4s(t− 4),

where s(t) is the stock price at day t. We have three months of daily stock price

y(t) to train our model. How should we find the best scalars a1, . . . , a4 for future

prediction? One natural objective is to pick a1, . . . , a4 that minimize

3 months∑
t=1

(s(t)− y(t))2.

This is a least squares problem.

• Example 3: Detecting feasibility. Suppose we want to decide if a given set of equalities

and inequalities is feasible:

S = {x| hi(x) = 0, i = 1, . . . ,m; gj(x) ≥ 0, j = 1, . . . , k},
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where hi : Rn → R, gj : Rn → R. Define

f(x, s) =
m∑
i=1

h2i (x) +
k∑
j=1

(gj(x)− s2j)2,

for some new variables sj. We have

min
x,s

f(x, s) = 0⇔ S is non-empty.

(Why?)

2.2 First order optimality conditions for unconstrained problems

2.2.1 Descent directions

Definition 1. Consider a function f : Rn → R and a point x ∈ Rn. A direction d ∈ Rn is

a descent direction at x if ∃ ᾱ > 0 s.t.

f(x+ αd) < f(x), ∀α ∈ (0, ᾱ).

Lemma 1. Consider a point x ∈ Rn and a continuously differentiable function f . Then,

any direction d that satisfies ∇Tf(x)d < 0 is a descent direction. (In particular, −∇f(x) is

a descent direction if nonzero).

Figure 4: Examples of descent directions

Proof: Let g : R→ R be defined as g(α) = f(x+ αd) (x and d are fixed here). Then

g′(α) = dT∇f(x+ αd).
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We use Taylor expansion to write

g(α) = g(0) + g′(0)α + o(α)

⇔f(x+ αd) = f(x) + α∇Tf(x)d+ o(α)

⇔f(x+ αd)− f(x)

α
= ∇fT (x)d+

o(α)

α

Since limα↓0
|o(α)|
α

= 0, there exists ᾱ s.t. ∀α ∈ (0, ᾱ), we have |o(α)|
α

< 1
2
|∇fT (x)d|. Since

∇f(x)Td < 0 by assumption, we conclude that ∀α ∈ (0, ᾱ), f(x+ αd)− f(x) < 0. �

Remark: The converse of Lemma 1 is not true. Consider, e.g., f(x1, x2) = x21−x22, d = (0, 1)T

and x̄ = (1, 0)T . For α ∈ R, we have

f(x̄+ αd)− f(x̄) = 12 − (0 + α2)− 12 + 02 = −α2 < 0,

which shows that d is a descent direction for f at x̄. But ∇Tf(x̄)d = (2, 0) · (0, 1)T = 0.

2.2.2 First order necessary condition for optimality (FONC)

Theorem 3 (Fermat). If x̄ is an unconstrained local minimum of a differentiable function

f : Rn → R, then ∇f(x̄) = 0.

Proof: If ∇f(x̄) 6= 0, then ∃i s.t. ∂f
∂xi

(x̄) 6= 0. Then, from Lemma 1, either ei or −ei is a de-

scent direction. (Here, ei is the ith standard basis vector.) Hence, x̄ cannot be a local min. �

Let’s understand the relationship between the concepts we have seen so far.
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Example (*): Consider the function

f(y, z) = (y2 − z)(2y2 − z)

Claim 1: (0, 0) is not a local minimum.

Claim 2: (0, 0) is a local minimum along every line that passes through it.

Proof of claim 1: The function f(y, z) = (y2− z)(2y2− z) is negative whenever y2 < z < 2y2

and this region gets arbitrarily close to zero; see figure.

Proof of claim 2: For any direction d = (d1, d2)
T , let’s look at g(α) = f(αd) :

g(α) = (α2d21 − αd2)(2α2d21 − αd2) = 2d41α
4 − 3d21d2α

3 + d22α
2

g′(α) = 8d41α
3 − 9d21d2α

2 + 2d22α

g′′(α) = 24d41α
2 − 18d21d2α + 2d22

g′(0) = 0, g′′(0) = 2d22

Note that g′(0) = 0. Moreover, if d2 6= 0, α = 0 is a (strict) local minimum for g because of

the SOSC (see Theorem 5 below). If d2 = 0, then g(α) = 2d41α
4 and again α = 0 is clearly a

(strict) local minimum. �

2.2.3 An application of the first order optimality condition

As an application of the FONC, we give a simple proof of the arithmetic-geometric mean

(AMGM) inequality (attributed to Cauchy):

(x1x2 . . . xn)1/n ≤ x1 + x2 + . . .+ xn
n

, for all x ≥ 0.

Our proof follows [1]. We are going to need the following lemma.
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Lemma 2. If a continuous function f : Rn → R is radially unbounded (i.e., lim||x||→∞ f(x) =

∞), then the unconstrained minimum of f is achieved.

Proof: Since lim||x||→∞ f(x) =∞, all sublevel sets of f must be compact (why?).

Therefore, minx∈Rn f(x) equals

min
x
f(x)

s.t. f(x) ≤ γ

for any γ for which the latter problem is feasible. Now we can apply Weierstrass and estab-

lish the claim. �

Proof of AMGM: The inequality clearly holds if any xi is zero. So we prove it for x > 0.

Note that:

(x1 . . . xn)1/n ≤
∑n

i=1 xi
n

∀x > 0

⇔ (ey1 . . . eyn)1/n ≤
∑
eyi

n
∀y

⇔ e
∑
yi/n ≤

∑
eyi

n
∀y

⇔
∑
i

eyi ≥ ne
∑
yi/n ∀y. (2)

Ideally, we want to show that

f(y1, . . . , yn) =
∑
i

eyi − ne
∑
yi/n ≥ 0, ∀y.

A possible approach for proving that a function f : Rn → R is nonnegative is to find all

points x for which ∇f(x) = 0 and verify that f is nonnegative when evaluated at these

points. For this reasoning to be valid though, one needs to be sure that the minimum of f

is achieved (see figure below to see why).
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Figure 5: Example of a function f where f(x) ≥ 0, for all x such that ∇f(x) = 0 without f

being nonnegative.

The idea now is to use Lemma (2) to show that the minimum is achieved. But f is not

radially unbounded (to see this, take y1 = · · · = yn). We will get around this below by

working with a function in one less variable that is indeed radially unbounded. Observe that

(2) holds⇔

[
min ey1 + . . .+ eyn

s.t. y1 + . . .+ yn = s

]
≥ nes/n ∀s ∈ R

⇔ min ey1 + . . .+ eyn−1 + es−(y1+...+yn−1) ≥ nes/n ∀s

Define fs(y1, . . . , yn−1) := ey1+. . .+eyn−1+es−y1−...−yn−1 . Notice that fs is radially unbounded

(why?). Let’s look at the zeros of the gradient of fs:

∂fs
∂yi

= eyi − es−y1−...−yn−1 = 0

⇒ yi = s− y1 − . . .− yn, ∀i

⇒ y∗i =
s

n
, i = 1, . . . , n− 1.

This is the only solution to ∇fs = 0. To see this, let’s write our equations in matrix form

2 1 1 . . . 1

1 2 1 . . . 1
...

. . .
...

. . .

1 2





y1
...
...
...

yn−1


=



s
...
...
...

s


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Denote the matrix on the left by B. Note that B = 11T + I ⇒ λmin(B) = 1⇒ det(B) 6= 0,

so the system must have a unique solution.

Now observe that

fs(y
∗) = ne

s
n .

Since fs(y
∗) = ne

s
n and fs is radially unbounded, it follows that

fs(y) ≥ nes/n, ∀y,

and this is true for any s. �

2.3 Second order optimality conditions

2.3.1 Second order necessary and sufficient conditions for local optimality

Theorem 4 (Second Order Necessary Condition for (Local) Optimality (SONC)). If x∗ is

an unconstrained local minimizer of a twice differentiable function f : Rn → R, then in

addition to ∇f(x∗) = 0, we must have

∇2f(x∗) � 0

(i.e., the Hessian at x∗ is positive semidefinite).

Proof: Consider some y ∈ Rn. For α > 0 the second order Taylor expansion of f around x∗

gives

f(x∗ + αy) = f(x∗) + αyT∇f(x∗) +
α2

2
yT∇2f(x∗)y + o(α2).

Since ∇f(x∗) must be zero (as previously proven), we have

f(x∗ + αy)− f(x∗)

α2
=

1

2
yT∇2f(x∗)y +

o(α2)

α2
.

By definition of local optimality of x∗, the left hand side is nonnegative for α sufficiently

small. This implies that

lim
α↓0

1

2
yT∇2f(x∗)y +

o(α2)

α2
≥ 0.

But

lim
α↓0

o(α2)

α2
= 0⇒ yT∇2f(x∗)y ≥ 0.

Since y was arbitrary, we must have ∇2f(x∗) � 0. �

Remark: The converse of this theorem is not true (why?).
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Theorem 5 (Second Order Sufficient Condition for Optimality (SOSC)). Suppose f : Rn →
R is twice differentiable and there exists a point x∗ such that ∇f(x∗) = 0, and

∇2f(x∗) � 0

(i.e., the Hessian at x∗ is positive definite). Then, x∗ is a strict local minimum of f .

Proof: Let λ > 0 be the minimum eigenvalue of ∇2f(x∗). This implies that

∇2f(x∗)− λI � 0

⇒ yT∇2f(x∗)y ≥ λ||y||2,∀y ∈ Rn.

Once again, Taylor expansion yields

f(x∗ + y)− f(x∗) = yT∇f(x∗) +
1

2
yT∇2f(x∗)y + o(||y||2)

≥ 1

2
λ||y||2 + o(||y||2)

= ||y||2
(
λ

2
+
o(||y||2)
||y||2

)
.

Since lim||y||→0
o(||y||2)
||y||2 = 0, ∃δ > 0, s.t. o(||y||2)

||y||2 < λ
2
,∀y with ||y|| ≤ δ.

Hence,

f(x∗ + y) > f(x∗), ∀y with ||y|| ≤ δ.

But this by definition means that x∗ is a strict local minimum. �

Remark: The converse of this theorem is not true (why?).

2.3.2 Least squares revisited

Let A ∈ Rm×n, b ∈ Rm and suppose that the columns of A are linearly independent. Recall

that least squares is the following problem:

min. ||Ax− b||2.

Let f(x) = ||Ax− b||2 = xTATAx− 2xTAT b+ bT b. Let’s look for candidate solutions among

the zeros of the gradient:

∇f(x) = 2ATAx− 2AT b
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∇f(x) = 0⇒ ATAx = AT b (3)

⇒ x = (ATA)−1AT b

Note that the matrix ATA is indeed invertible because its nullspace is just the origin:

ATAx = 0⇒ xTATAx = 0⇒ ||Ax||2 = 0⇒ Ax = 0⇒ x = 0,

where, for the last implication, we have used the fact that the columns of A are linearly

independent. As ∇2f(x) = 2ATA � 0 (as xTATAx = ||Ax||2 ≥ 0 and = 0 ⇔ x = 0), then

x = (ATA)−1AT b is a strict local minimum. As we will see later in the course, this solution

is actually the unique global minimum.

2.4 Things to think about

The optimality conditions introduced in this lecture suffer from two problems:

1. It is possible for all three conditions together to be inconclusive about testing local

optimality (can you give an example?).

2. They say absolutely nothing about global optimality of solutions.

We will see in the next lecture how to add more structure on f and Ω to get global statements.

This will bring us to the fundamental notion of convexity.
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