
ORF 523 Lecture 5 Spring 2016, Princeton University

Instructor: A.A. Ahmadi

Scribe: G. Hall Tuesday, February 23, 2016

When in doubt on the accuracy of these notes, please cross check with the instructor’s notes,

on aaa. princeton. edu/ orf523 . Any typos should be emailed to gh4@princeton.edu.

In this lecture, we will cover:

• Separation of convex sets with hyperplanes

• The Farkas lemma

• Strong duality of linear programming

1 Separating hyperplane theorems

The following is one of the most fundamental theorems about convex sets:

Theorem 1. Let C and D be two convex sets in Rn that do not intersect (i.e., C ∩D = ∅).

Then, there exists a ∈ Rn, a 6= 0, b ∈ R, such that aTx ≤ b for all x ∈ C and aTx ≥ b for

all x ∈ D.

Figure 1: An illustration of Theorem 1.

We remark that neither inequality in the conclusion of Theorem 1 can be made strict.

Thanks to Fermi Ma for asking this question and Kaizheng Wang for giving the following

nice example:
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Consider the set drawn above which we denote by A (the dotted line is not included in the

set). We would like to separate it from its complement Ā. The two sets are convex and do

not intersect. The conclusion of Theorem 1 holds with a = (1, 0)T and b = 0. Nevertheless,

there does not exist a, b for which aTx ≤ b, ∀x ∈ A and aTx > b,∀x ∈ Ā.

In the case of the picture in Figure 1, the sets C and D are strictly separated. This means

that ∃a, b s.t. aTx < b,∀x ∈ C and aTx > b, ∀x ∈ D.

Strict separation may not always be possible, even when both C and D are closed. You can

convince yourself of this fact by looking at Figure 2.

Figure 2: Closed convex sets cannot always be strictly separated.

We will prove a special case of Theorem 1 which will be good enough for our purposes (and

we will prove strict separation in this special case).

Theorem 2. Let C and D be two closed convex sets in Rn with at least one of them bounded,

and assume C ∩D = ∅. Then ∃a ∈ Rn, a 6= 0, b ∈ R such that

aTx > b, ∀x ∈ D and aTx < b, ∀x ∈ C.
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Proof: Our proof follows [1] with a few minor deviations. Define

dist(C,D) = inf ||u− v||
s.t. u ∈ C, v ∈ D

The infimum is achieved (why?) and is positive (why?). Let c ∈ C and let d ∈ D be the

points that achieve it. Let

a = d− c, b =
||d||2 − ||c||2

2
.

(Note that a 6= 0). Our separating hyperplane will be a function f(x) = aTx− b. We claim

that

f(x) > 0, ∀x ∈ D and f(x) < 0, ∀x ∈ C.

Figure 3: Illustration of the proof of Theorem 2

If you are wondering why b is chosen as above, observe that

f

(
c+ d

2

)
= (d− c)T

(
c+ d

2

)
− ||d||

2 − ||c||2

2
= 0.

We show that f(x) > 0 for all x ∈ D. The proof that f(x) < 0 for all x ∈ C is identical.

Suppose for the sake of contradiction that ∃d̄ ∈ D with f(d̄) ≤ 0.

⇒ (d− c)T d̄− ||d||
2 − ||c||2

2
≤ 0. (1)
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Define g(x) = ||x− c||2. We claim that d̄− d is a descent direction for g at d. Indeed,

∇gT (d)(d̄− d) = (2d− 2c)T (d̄− d)

= 2(−||d||2 + dT d̄− cT d̄+ cTd)

= 2(−||d||2 + (d− c)T d̄+ cTd)

≤ 2

(
−||d||2 +

||d||2 − ||c||2

2
+ cTd

)
= −||d||2 − ||c||2 + 2cTd

= −||d− c||2 < 0

where the first equality is obtained as

g(x) = (x− c)T (x− c) = xTx− 2cTx+ cT c⇒ ∇g(x) = 2x− 2c,

the first inequality is obtained from (1) and the second inequality is implied by the fact that

d 6= c.

Hence ∃ā > 0 s.t. ∀α ∈ (0, ᾱ)

g(d+ α(d− d̄)) < g(d)

i.e.,

||d+ α(d− d̄)− c||2 < ||d− c||2.

But this contradicts that d was the closest point to c. �

The following is an important corollary.

Corollary 1. Let C ⊆ Rn be a closed convex set and x ∈ Rn a point not in C. Then x and

C can be strictly separated by a hyperplane.
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2 Farkas Lemma and strong duality

2.1 Farkas Lemma

Theorem 3 (Farkas Lemma). Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following

sets must be empty:

(i) {x| Ax = b, x ≥ 0}

(ii) {y| ATy ≤ 0, bTy > 0}

Remark:

• Systems (i) and (ii) are called strong alternatives, meaning that exactly one of them

can be feasible. Weak alternatives are systems where at most one can be feasible.

• This theorem is particularly useful for proving infeasibility of an LP via an explicit and

easily-verifiable certificate. If somebody gives you a y as in (ii), then you are convinced

immediately that (i) is infeasible (see proof).

Geometric interpretation of the Farkas lemma:

The geometric interpretation of the Farkas lemma illustrates the connection to the separating

hyperplane theorem and makes the proof straightforward. We need a few definitions first.

Definition 1 (Cone). A set K ⊆ Rn is a cone if x ∈ K ⇒ αx ∈ K for any scalar α ≥ 0.

Definition 2 (Conic hull). Given a set S, the conic hull of S, denoted by cone(S), is the

set of all conic combinations of the points in S, i.e.,

cone(S) =

{
n∑
i=1

αixi| αi ≥ 0, xi ∈ S

}
.

Figure 4: An illustration of the notion of a conic hull
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The geometric interpretation of Farkas lemma is then the following. Let ã1, . . . , ãn denote

the columns of A and let cone{ã1, . . . , ãn} be the cone of all their nonnegative combinations.

If b /∈ cone{ã1, . . . , ãn}, then we can separate it from the cone with a hyperplane.

Figure 5: Geometric interpretation of the Farkas lemma

Proof of Farkas Lemma (Theorem 3): (ii) ⇒ (i) This is the easy direction. Suppose the

contrary: ∃x ≥ 0 such that Ax = b. Then xTATy = bTy > 0. But x ≥ 0, ATy ≤ 0 ⇒
xTATy ≤ 0. Contradiction.

(i) ⇒ (ii) Let ã1, . . . , ãn be the columns of a matrix A. Let C := cone{ã1, . . . , ãn}. Note

that C is convex (why?) and closed. The closedness takes some thought. Note that conic

hulls of closed (or even compact) sets may not be closed.

We argue that if S := {s1, . . . , sn} is a finite set of points, then cone(S) is closed. Hence C

is a closed convex set.
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Let {zk}k be a sequence of points in cone(S) converging to a point z̄. Consider the following

linear program1:

min
α,z
||z − z̄||∞

s.t.
n∑
i=1

αisi = z

αi ≥ 0.

The optimal value of this problem is greater or equal to zero as the objective is a norm.

Furthermore, for each zk, there exists α(k) that makes the pair (zk, α(k)) feasible to the LP

(since zk ∈ cone(S)). As the zk’s get arbitrarily close to z̄, we conclude that the optimal

value of the LP is zero. Since LPs achieve their optimal values, it follows that z̄ ∈ cone(S).

We are now ready to use the separating hyperplane theorem. We have b /∈ C by the

assumption that (i) is infeasible. By Corollary 1, the point b and the set C can be (even

strictly) separated; i.e.,

∃y ∈ Rm, y 6= 0, r ∈ R s.t. yT z ≤ r ∀z ∈ C and yT b > r.

Since 0 ∈ C, we must have r ≥ 0. If r > 0, we can replace it by r′ = 0. Indeed, if ∃z ∈ C
s.t. yT z > 0, then yT (αz) can be arbitrarily large as α → ∞ while we know that αz ∈ C.

So

yT z ≤ 0, ∀z ∈ C and yT b > 0.

Since ã1, . . . , ãn ∈ C, we see that ATy ≤ 0. �

We remark that the Farkas lemma can be directly proven from strong duality of linear

programming. The converse is also true! We will show these facts next. Note that there are

other proofs of LP strong duality; e.g., based on the simplex method. However the simplex-

based proof does not generalize to broader classes of convex programs, while the separating

hyperplane based proofs do.

1Convince yourself that this can be rewritten as a linear program.
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2.2 Farkas lemma from LP strong duality

Consider the primal-dual LP pair:

(P )

 min 0

Ax = b

x ≥ 0

 and (D)

[
max bTy

ATy ≤ 0

]

Note that (D) is trivially feasible (set y = 0). So if (P) is infeasible, then (D) must be

unbounded or else strong duality would imply that the two optimal values should match,

which is impossible since (P) by assumption is infeasible.

But (D) unbounded ⇒ ∃y s.t. ATy ≤ 0, bTy > 0. �

2.3 LP strong duality from Farkas lemma

Theorem 4 (Strong Duality). Consider a primal-dual LP pair:

(P )

min cTx

Ax = b

x ≥ 0

 and (D)

[
max bTy

ATy ≤ c

]

If (P) has a finite optimal value, then so does (D) and the two values match.

Remark: If you don’t recall how to write down the dual of an LP, look up the first few pages

of Chapter 5 of [1]. The derivation there works more broadly (not just LP).

An alternative way of deriving the dual is the following. Recall that the goal of duality is to

provide lower bounds on the primal (if the primal is a minimization problem). Here, we will

try to find the largest lower bound on (P ). Hence, we aim to solve

max
γ

γ

s.t. ∀x,

[
Ax = b

x ≥ 0

]
⇒ γ ≤ cTx

Notice that a sufficient condition2 for the implication to hold is if ∃η ∈ Rm, µ ∈ Rn with

µ ≥ 0 such that

∀x, cTx− γ = ηT (Ax− b) + µTx.

2It turns out that this sufficient condition is also necessary! This is the strong duality theorem.
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Indeed, if x is such that Ax = b, x ≥ 0, then ηT (Ax−b) = 0 and µTx ≥ 0, hence cTx−γ ≥ 0.

As a consequence, one can propose a stronger reformulation of the initial problem:

max
γ,η,µ

γ

s.t. ∀x, cTx− γ = ηT (Ax− b) + µTx,

µ ≥ 0.

To get rid of the quantifier ∀x, we notice now that two affine functions of x are equal if and

only if their coefficients are equal. Therefore, the previous problem is equivalent to

max
γ,η,µ

γ

s.t. c = ATη + µ

γ = ηT b

µ ≥ 0.

Simple rewriting gives:

max
η
bTη

s.t. c ≥ ATη,

which is indeed our dual problem. �

To prove strong duality from Farkas, it is useful to first prove a variant of the Farkas lemma.

This variant comes handy when one wants to prove infeasibility of an LP in inequality form.

Lemma 1 (Farkas Variant). Let A ∈ Rm×n.

{x| Ax ≤ b} is empty ⇔ ∃λ ≥ 0 s.t. λTA = 0, λT b < 0.

Proof:

(⇐) Easy (why?)

(⇒) Rewrite the LP in standard form and apply the (standard) Farkas lemma:

Ax ≤ b⇔


A(x+ − x−) + s = b

x ≥ 0

x+ ≥ 0

x− ≥ 0

⇔ (
A −A I

)x+x−
s

 = b, x+, x−, s ≥ 0

⇒ ∃λ s.t. bTy < 0,

 AT

−AT

I

λ ≥ 0⇒ ∃λ s.t. bTy < 0, ATλ = 0, λ ≥ 0. �
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Proof of LP strong duality from the Farkas lemma: Consider the primal dual pair:

(P )

min cTx

Ax = b

x ≥ 0

 and (D)

[
max bTy

ATy ≤ c

]

Assume the optimal value of (P) is finite and equal to p∗. We would be done if we prove

that the following inequalities are feasible:[
yT b ≥ p∗

ATy ≤ c

]
. (2)

Indeed, any y satisfying ATy ≤ c must also satisfy yT b ≤ p∗ by weak duality (whose proof is

trivial), so we would get that yT b = p∗. Let’s rewrite (2) slightly:(
AT

−bT

)
y ≤

(
c

−p∗

)
.

Suppose these inequalities were infeasible. Then, the Farkas lemma variant would imply that

∃λ :=

(
λ̃

λ0

)
≥ 0 s.t. λ̃TAT − λ0bT = 0 and λ̃T c− λ0p∗ < 0⇒ Aλ̃ = λ0b, c

T λ̃ < λ0p
∗.

We consider two cases:

• Case 1: λ0 = 0⇒ Aλ̃ = 0, cT λ̃ < 0. Recall that we are assuming that (P) has a finite

optimal value. Let x∗ be an optimal solution of (P) and let x = x∗ + λ̃. Then x ≥ 0

and

Ax = Ax∗ + Aλ̃ = Ax∗ = b

as x∗ is feasible. Furthermore,

cTx = cTx∗ + cT λ̃ = p∗ + cT λ̃ < p∗

which contradicts the fact that p∗ is the primal optimal value.

• Case 2: λ0 > 0. Let x = λ̃
λ0
. Then Ax = 1

λ0
Aλ̃ = 1

λ0
b = b, x ≥ 0 and

cTx = cT
λ̃

λ0
<

1

λ0
λ0p

∗ = p∗.

This contradicts p∗ being the primal optimal value. �
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Notes

Further reading for this lecture can include Chapter 2 of [1].
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