Approximation algorithms + Limits of computation & undecidability + Concluding remarks

ORF 523

Lecture 19

Instructor: Amir Ali Ahmadi, TA: G. Hall,C.Y. Liu, Spring 2017

Convex relaxations with worst-case guarantees

One way to cope with NP-hardness is to aim for suboptimal solutions with guaranteed accuracy

Convex relaxations provide a powerful tool for this task

ORFE

UNIVERSITY

•For randomized algorithms, require this in expectation.

General recipe for convex optimization based approx. algs.

Vertex Cover

•Vertex Cover: A subset of the the vertices that touch all the edges.

•VERTEX COVER: Given a graph G(V,E) and an integer k, is there a vertex cover of size smaller than k?

VERTEX COVER is NP-hard.

 $VC(G) = n - \alpha(G)$

2-approximation for vertex cover via LP

Vertex cover as an integer program:

$$f':= VC(b) = \min_{\mathcal{X}} \sum_{i=1}^{n} \chi_i$$

$$\chi_i + \chi_j \gamma_i | f(i,j) \in E$$

$$\chi_i \in \{o, i\} \quad i=1, -, n$$

•LP relaxation:

$$\begin{split} f_{Lp} &:= \min \sum_{i=1}^{n} \chi_i \\ \chi_i + \chi_j \chi_i , \quad if \quad (i,j) \in E \\ &\circ \leq \chi_i \leq 1 \qquad i = 1, -, n \\ \text{Obviously} \quad f_{Lp} \leq f^*, \qquad \text{Denote the optimal solution by } \chi_{Lp}. \end{split}$$

Rounding & Bounding

Rounding:
Set
$$\hat{\lambda}_{i} = \begin{cases} 1 , & if \chi_{LB,i} \ \overline{\lambda}_{L'} \\ o & other wise \end{cases}$$

 $\hat{\lambda}$ gives a valid vertex cover by Vedges, one of the two end hodes in the LP solution must be $\overline{\lambda}_{L'}^{L'}$.
 $\hat{\delta}$ So $f^{*} \leq \hat{f} := \sum_{i} \hat{\lambda}_{i}$:
Bounding:
 $\hat{f} \leq 2 \ f_{LP}$
by in worst case, we are changing a bunch of " $\frac{1}{2}$'s" to " $\frac{1}{2}$'s".
 $\hat{\sigma} \Rightarrow \hat{f} \leq 2 \ f^{*}$
 $\hat{\delta}_{L'} = f_{LP} \leq f^{*}$

 $Overall: \qquad f^* \leq \hat{f} \leq 2f^*$

UNIVERSITY

=

Best constant approximation ratio known to date.

MAXCUT

MAXCUT

•Input: A graph G(V, E), nonnegative rational numbers a_k on each edge, a rational number k.

•Question: Is there a cut of value $\geq k$?

MAXCUT is NP-complete (e.g., relatively easy reduction from 3SAT)

Contrast this to MINCUT which can be solved in poly-time by LP

A .878-approximation algorithm for MAXCUT via SDP

- Seminal work of Michel Goemans and David Williamson (1995)
- Before that the best approximation factor was ½
- First use of SDP in approximation algorithms
- Still the best approximation factor to date
- An approximation ratio better than 16/17=.94 implies P=NP (Hastad)
- Under stronger complexity assumptions, .878 is optimal
- No LP-based algorithm is known to match the SDP-based 0.878 bound

The GW SDP relaxation

$$f^{\dagger} = \max \frac{1}{4} \sum_{i,j} w_{ij} (1 - \chi_i \chi_j) = \frac{1}{4} \sum_{i,j} w_{ij} - \frac{1}{4} \left[\min \sum_{i,j} w_{ij} \chi_i \chi_j \right]$$

s.t. $\chi_i^2 = 1$
$$\sum_{i=f_2^{\dagger}} \sum_{j=1}^{\infty} \sum_{i=j}^{\infty} \sum_$$

•It's SDP relaxation:
$$f_{2_{Sbp}} := \min_{\substack{\lambda \in S^{nyn} \\ \chi \in S^{nyn}}} T_r(QX)$$

 $\chi_{ii} = 1$
 $\chi_{\gamma} \circ$

The GW rounding

. If the optimal solution of the SDP is rank-1 => done.

$$X = \bigvee_{n \times r} \bigvee_{n \to r} \bigvee_{n \times r} \bigvee_{n \to r}$$

o Denote the columns of V by $v_i \in \mathbb{R}^{2}$. $V = [v_i, ..., v_n]$ o Observe that $X_{ij} = v_i^T v_j$

o So
$$||v_i|| = |\forall i \quad (b_i \land \forall i i = 1 \mod b_i)$$
.

o So we have n points VI, _, On on the Unit sphere St in IR.

o Set
$$\chi_i = \begin{cases} 1 & if \ p^T U_i \neq 0 \\ -1 & if \ p^T U_i \neq 0 \end{cases}$$
 $z=1, \dots, h.$

The GW bound

$$\begin{aligned} \mathcal{P}_{:=} \left\{ \mathbf{x} \in \widehat{\mathcal{R}} \mid P^{\mathsf{T}} \mathbf{x}_{\leq 0} \right\} \\ \hat{f}_{i} := \mathcal{E} \left[\sum_{i,j} \omega_{ij} |\mathbf{x}_{i} | \mathbf{x}_{j} \right] = \sum_{i,j} \omega_{ij} \mathcal{E} \left[\mathbf{x}_{i} | \mathbf{x}_{j} \right] \\ \frac{\Theta_{ij}}{\pi} := \frac{1}{\pi} \operatorname{arc} \operatorname{css} \left(\overline{\mathcal{U}_{i}^{\mathsf{T}} \mathcal{U}_{j}} \right) \\ \frac{\Theta_{ij}}{\pi} := \frac{1}{\pi} \operatorname{arc} \operatorname{css} \left(\overline{\mathcal{U}_{i}^{\mathsf{T}} \mathcal{U}_{j}} \right) \\ \mathcal{E} \left[n_{i} n_{j} \right] = 1 \cdot \Pr \left[\overline{\mathcal{U}_{i} | \mathcal{U}_{j} | o_{i} | \operatorname{same} | \operatorname{side} of \mathcal{P} \right] - 1 \cdot \Pr \left[\overline{\mathcal{U}_{i} | \mathcal{U}_{j} | o_{i} | \operatorname{defmed} | \operatorname{side} of \mathcal{P} \right] \\ (c_{i} + j) := 1 - \frac{\Theta_{ij}}{\pi} - \frac{\Theta_{ij}}{\pi} \\ := 1 - \frac{\Omega_{i}}{\pi} \operatorname{arc} \operatorname{css} \left(\overline{\mathcal{U}_{i}^{\mathsf{T}} \mathcal{U}_{j} \right) - \frac{| \mathcal{U}_{i} | \operatorname{defmed} |$$

The GW bound

$$= \overline{f_2} = \frac{2}{\pi} \sum_{i,j} w_{ij} \operatorname{arc\,sin} \chi_{ij}$$

o Recall that
$$f^* = \frac{1}{4} \left(\sum_{i,j} w_{ij} - f_2^* \right)$$

o Let
$$\hat{f} := \frac{1}{4} \left(\sum_{i,j} w_{ij} - \hat{f}_i \right) = \frac{1}{4} \left(\sum_{i,j} w_{ij} - \frac{2}{\pi} \sum_{i,j} w_{ij} \operatorname{aresin} X_{ij} \right)$$

$$= \frac{1}{4} \sum_{ij} \left[1 - \frac{2}{\pi} \operatorname{arcsin} \left[x_{ij} \right] \right] = \frac{1}{4} \frac{2}{\pi} \sum_{ij} \left[\sum_{ij} \operatorname{arccos} \left[x_{ij} \right] \right]$$

Relating this to the SDP optimal value

$$\hat{f} = \frac{1}{2\pi} \sum_{ij} w_{ij} \arccos X_{ij}$$

$$f_{J_{DP}} := \frac{1}{4} \left(\sum_{ij} w_{ij} - f_{21DP} \right)$$

$$= \frac{1}{4} \sum_{ij} w_{ij} - \frac{1}{4} \sum_{ij} w_{ij} X_{ij} = \frac{1}{4} \sum_{ij} w_{ij} (1 - X_{ij})$$

$$W_{ant} = \frac{1}{4} \sum_{ij} w_{ij} - \frac{1}{4} \sum_{ij} w_{ij} X_{ij} = \frac{1}{4} \sum_{ij} w_{ij} (1 - X_{ij})$$

$$\frac{1}{2\pi} \int_{0}^{f_{DP}} \int_{0}^{f} f_{ij} \int_{0}^{f} f$$

The final step

Bound term by term. You achieve this approximation ratio.

Optimal $x: \qquad x_{GW} \approx 0.878$

Sometimes people obtain mathematically significant license plates purely by accident, without making a personal selection. A striking example of this phenomenon is the case of Michel Goemans, who received the following innocuous-looking plate from the Massachusetts Registry of Motor Vehicles when he and his wife purchased a Subaru at the beginning of September 1993:

Two weeks later, Michel got together with his former student David Williamson, and they suddenly realized how to solve a problem that they had been working on for some years: to get good approximations for maximum cut and satisfiability problems by exploiting semidefinite programming. Lo and behold, their new method—which led to a famous, award-winning paper [15]—yielded the approximation factor .878! There it was, right on the license, with C, S, and W standing respectively for cut, satisfiability, and Williamson.

Limits of computation

What theory of NP-completeness established for us

Recall that all NP-complete problems polynomially reduce to each other.

If you solve one in polynomial time, you solve ALL in polynomial time.

■Assuming P≠NP, no NP-complete problem can be solved in polynomial time.

This shows limits of *efficient* computation (under a complexity theoretic assumption)

What's coming next: limits of computation in general (and under no assumptions)

Matrix mortality

Consider a collection of $m n \times n$ matrices $\{A_1, \dots, A_m\}$.

We say the collection is mortal if there is a finite product out of the matrices (possibly allowing repetition) that gives the zero matrix.

Examp	le 1:						>>	A1*A2	
A1 =		A2 =			ans	ans =			
	0 0	0 1	0 -1	1 0			>>	0 -1 A1*A2*	0 0 A1*A2
				ans =					
								0	0
Example	from [V	V11].						0	U

Mortal.

Matrix mortality

Consider a collection of $m n \times n$ matrices $\{A_1, \dots, A_m\}$.

We say the collection is mortal if there is a finite product out of the matrices (possibly allowing repetition) that gives the zero matrix.

Example 2:	A1 =	A2 =		A3 =			ans = 2	ans = 2 5	
							0	3	
	1	-2	0	-1	1	2	>> A1*A2	*A3*A1*A3	
	3	0	-1	0	0	-1			
							ans –		
Not mortal (17	38							
							9	18	
• In this case, can just abcome that all three matrices have							>> A2*A2*A3*A1*A3		
nonzero (ans =								
	<u> </u>						7	16	
• Determin	-3	-6							
							>> A2*A2	*A1*A3	
							ans =		
But what if we aren't so lucky?							1	4	
							3	6	
	RFE						»»		

9

>> 11*12*13

Matrix mortality

MATRIX MORTALITY

Input: A set of $m n \times n$ matrices with integer entries.

•Question: Is there a finite product that equals zero?

Thm. MATRIX MORTALITY is undecidable already when

$$- n = 3, m = 7,$$

or

$$- n = 21, m = 2.$$

- This means that there is no finite time algorithm that can take as input two 21x21 matrices (or seven 3x3 matrices) and always give the correct yes/no answer to the question whether they are mortal.
- This is a definite statement.
 (It doesn't depend on complexity assumptions, like P vs. NP or alike.)
 - How in the world would someone prove something like this?
 - **ORFE** By a reduction from another undecidable problem!

The Post Correspondence Problem (PCP)

Given a set of dominos such as the ones above, can you put them next to each other (repetitions allowed) in such a way that the top row reads the same as the bottom row? Emil Post (1897-1954)

Answer to this instance is YES:

The Post Correspondence Problem (PCP)

What about this instance?

Emil Post (1897-1954)

Answer is NO. Why?

There is a length mismatch, unless we only use (3), which is not good enough.

But what if we aren't so lucky?

The Post Correspondence Problem (PCP)

■PCP

Input: A finite set of *m* domino types with letters *a* and *b* written on them.

•Question: Can you put them next to each other (repetition allowed) to get the same word in the top and bottom row?

Thm. PCP is **undecidable** already when m = 7.

Again, we are ruling out any finite time algorithm.

•PCP is decidable for m = 2.

•Status unknown for 2 < m < 7.

Emil Post (1897-1954)

Reductions

• There is a rather simple reduction from PCP to MATRIX MORTALITY; see, e.g., [Wo11].

- This shows that if we could solve MATRIX MORTALITY in finite time, then we could solve PCP in finite time.
- It's impossible to solve PCP in finite time (because of another reduction!)
- Hence, it's impossible to solve MATRIX MORTALITY in finite time.
- Note that these reductions only need to be finite in length (not polynomial in length like before).

Integer roots of polynomial equations

Can you give me three positive integers x, y, z such that

$$x^2 + y^2 = z^2?$$

(3, 4, 5) (5, 12, 13) (8, 15, 17) (7, 24, 25)Sure: (20, 21, 29) (12, 35, 37) (9, 40, 41) (28, 45, 53)

And there are infinitely many more...

•How about
$$x^3 + y^3 = z^3$$
?

•How about $x^4 + y^4 = z^4$?

•How about $x^5 + y^5 = z^5$?

Fermat's last theorem tells us the answer is NO to all these instances.

Integer roots to polynomial equations

What about integer solutions to $x^3 + y^3 + z^3 = 29$?

YES: (3,1,1)

What about $x^3 + y^3 + z^3 = 30$?

Looped in MATLAB over all |x, y, z| less than 10 million \rightarrow no solution!

But answer is YES!! (-283059965, -2218888517, 2220422932)

What about $x^3 + y^3 + z^3 = 33$?

No one knows!

Integer roots of polynomial equations

POLY INT

•Input: A polynomial p in n variables and of degree d.

•Question: Does it have an integer root?

• Hilbert's 10th problem (1900): Is there an algorithm for POLY INT?

- Matiyasevich (1970) building on earlier work by Davis, Putnam, and Robinson: No! The problem is undecidable.
- It's undecidable even in fixed degree and dimension (e.g., d = 4, n = 58).

-ogicomix

Real/rational roots of polynomial equations

- If instead of integer roots, we were testing existence of real roots, then the problem would become decidable.
 - Such finite-time algorithms were developed in the past century (Tarski–Seidenberg)
- If instead we were asking for existence of rational roots,
 - We currently don't know if it's decidable!

- Nevertheless, both problems are NP-hard. For example for
 - A set of equations of degree 2
 - A single equation of degree 4.
 - Proof on the next slide.

A simple reduction

- We give a simple reduction from STABLE SET to show that testing existence of a real (or rational or integer) solution to a set of quadratic equations is NP-hard.
- Contrast this to the case of linear equations which is in P.

VERSITY

$$\exists x \ s.t. \qquad \exists x, z \ s.t.$$

$$\exists x, z \ s.t.$$

$$\begin{cases} (\chi_{1+\cdots} + \chi_{n} - \chi)^{2} = 0 \\ 1 - \chi_{1} - \chi_{j} = Z_{ij} \ i, j \in E \\ \chi_{i} \in \{0, 1\} \end{cases} \iff \begin{cases} (\chi_{1+\cdots} + \chi_{n} - \chi)^{2} = 0 \\ 1 - \chi_{i} - \chi_{j} = Z_{ij} \ i, j \in E \\ \chi_{i} (1 - \chi_{i}) = 0 \ i = 1, \dots, n \end{cases}$$

• How would you go from here to a single equation of degree 4? 29

Tiling the plane

- Given a finite collection of tile types, can you tile the 2dimenstional plane such that the colors on all tile borders match.
- Cannot rotate or flip the tiles.
- The answer is YES, for the instance presented.
- But in general, the problem is undecidable.

Stability of matrix pairs

•We say a matrix A is stable if all its eigenvalues are strictly inside the unit circle in the complex plane.

We say a pair of matrices {A1, A2} is stable if all matrix products out of A1 and A2 are stable.

Given {A1,A2}, let a* be the largest scalar such that the pair {aA1,aA2} is stable for all a<a*.</p>

```
■Define r(A1,A2) to be 1/a*.
```

•For a single matrix A, r(A) is the same thing as the spectral radius and can be computed in polynomial time.

STABLE MATIRX PAIR: Given a pair of matrices A1,A2, decide if r(A1,A2)<=1?

THM. STABLE MATRIX PAIR is undecidable already for 47x47 matrices.

All undecidability results are proven via reductions

$$x^3 + y^3 + z^3 = 33?$$

But what about the first undecidable problem?

The halting problem

HALTING

UNIVERSITY

•Input: A file containing a computer program p and a file containing an input x to the computer program.

Question: Does *p* ever terminate (aka halt) when given input *x*?

An instance of HALTING:

The halting problem

An instance of HALTING:

- Both the program *p* and the input *x* can be represented with a finite number of bits.
- Can there be a program --- call it terminates(p,x) --- that takes p and x as input and always outputs the correct yes/no answer to the question: does p halt on x?
 - We'll show that the answer is no!
 - This will be a proof by contradiction.

34

The halting problem is undecidable

Proof.

- Suppose there was such a program terminates(p,x).
- We'll use it to create a new program paradox(z):

```
function paradox(z)
1: if terminates(z,z)==1 goto line 1.
```

- The input *z* to paradox is a computer program.
- As a subroutine, paradox asks terminates to check whether a given computer program z halts when given itself as input. (This is perfectly legal as any program is just a finite number of bits.)
- Note that paradox halts on z if and only if z does not halt when given itself as input.
 - What happens if we run paradox(paradox) ?!
 - If paradox halts on itself, then paradox doesn't halt on itself.
 - If paradox doesn't halt on itself, then paradox halts on itself.
 - This is a contradiction → terminates can't exist.

The halting problem (1936)

Alan Turing (1912-1954)

Self-reference – a simpler example

Russell's paradox

•Question: Does it have an integer root?

A remarkable implication of this...

- Consider the following long-standing open problems in mathematics (among numerous others!):
- Is there an odd perfect number? (an odd number whose proper divisors add up to itself)
- Is every even integer larger than 2 the sum of two primes? (The Goldbach conjecture)

In each case, you can explicitly write down a polynomial of degree 4 in 58 variables, such that if you could decide whether your polynomial has an integer root, then you would be able to solve the open problem.

Proof.

- 1) Write a code that looks for a counterexample.
- 2) Code does not halt if and only if the conjecture is true (one instance of the halting problem!)
- 3) Use the reduction to turn this into an instance of POLY INT.

How to deal with undecidability?

Well we have only one tool in this class:

Convex optimization!

Stability of matrix pairs

•We say a matrix A is stable if all its eigenvalues are strictly inside the unit circle on the complex plane.

We say a pair of matrices {A1, A2} is stable if all matrix products out of A1 and A2 are stable.

Given {A1,A2}, let a* be the largest scalar such that the pair {aA1,aA2} is stable for all a<a*.</p>

```
Define r(A1,A2) to be 1/a*.
```

•For a single matrix A, r(A) is the same thing as the spectral radius and can be computed in polynomial time.

STABLE MATIRX PAIR: Given a pair of matrices A1,A2, decide if r(A1,A2)<=1?

THM. STABLE MATRIX PAIR is undecidable already for 47x47 matrices.

Common Lyapunov function

then, the matrix family is stable.

Such a function always exists! But may be extremely difficult to find!!

Computationally-friendly common Lyapunov functions

$$x_{k+1} = A_i x_k \quad \mathcal{A} := \{A_1, ..., A_m\}$$

If we can find a function $V(x) : \mathbb{R}^n \to \mathbb{R}$ such that V(x) > 0, $V(A_i x) < V(x), \ \forall i = 1, \dots, m$

then the matrix family is stable.

Common quadratic Lyapunov function:

$$V(x) = x^{T} P x$$

$$P \succ \circ$$

$$A_{i}^{T} P A_{i} \prec P \quad i = 1, ..., m$$

SDP-based approximation algorithm!

$$V(x) = x^T P x \qquad \begin{array}{c} P & \gamma & \circ \\ A_i^T P A_i \langle P & i = 1, \dots, m \end{array}$$

Exact if you have a single matrix (we proved this).

•For more than one matrix:

 $\beta^* = \text{largest } \beta$ such that SDP feasible for

$$\beta \mathcal{A} := \{\beta A_1, \dots, \beta A_m\}.$$
Let $\widehat{r}(\mathcal{A}) := \frac{1}{\beta^*}.$

Thm.
$$\frac{1}{\sqrt{n}} \hat{r}(\mathcal{A}) \leq r(\mathcal{A}) \leq \hat{r}(\mathcal{A})$$

Proof idea

•Upper bound:

Existence of a quadratic Lyapunov function sufficient for stability

•Lower bound (due to Blondel and Nesterov):

- We know from converse Lyapunov theorems that there always exist a Lyapunov function which is a norm
- We are approximating the (convex) sublevel sets of this norm by ellipsoids
- Apply John's ellipsoid theorem (see Section 8.4 of Boyd&Vandenberghe)

How can we do better than this SDP?

•Why look only for quadratic Lyapunov functions?

Look for higher order polynomial Lyapunov functions and apply our the SOS relaxation!

$$V(\chi) = C_1\chi_1^4 + C_2\chi_1\chi_2^3 + \dots + C_{17}\chi_2\chi_3\chi_4\chi_5 + \dots + C_{70}\chi_5^4$$

(w.l.o.g. take V to be homogeneous)
Require
$$V(x)$$
 SOS (and $V \neq o$)
 $V(x) - V$ (Aix) SOS $i=1,...,m$

Common SOS Lyapunov functions

$$V(x) = C_1 \chi_1^4 + C_2 \chi_1 \chi_2^3 + \dots + C_{17} \chi_2 \chi_3 \chi_4 \chi_5 + \dots + C_7 \chi_5^4$$
(w.l.o.g. Take V to be homogeneous)
Require V(x) SOS (and V=0)
 $V(x) - V$ (Aix) SOS $i = 1, -, m$

Remarks:

Since the dynamics $x_{k+1} = A_i x_k$ is homogeneous in x, we can parameterize our polynomial V to be homogeneous.

• This is just like the quadratic case: we look for $V(x) = x^T P x$, without linear or constant terms.

Note that the condition V(x) SOS implies that V is nonnegative. To make sure that it is actually positive definite (i.e., V(x) > 0, $\forall x \neq 0$), we can instead impose $V(x) - \beta(x_1^2 + \dots + x_n^2)^d$ SOS,

where β is a small constant (say 0.01), and 2d is the degree of V.

This condition implies that V is positive on the unit sphere, which by homogeneity implies that V is positive everywhere.

SOS-based approximation algorithm!

$$\beta^{*} = |argest \beta \quad such that the SOS program feasiblefor
$$\beta \mathcal{A} := \{\beta A_{1}, \dots, \beta A_{m}\}.$$

$$let \quad \widehat{r}_{21}(\mathcal{A}) := \frac{1}{\beta^{*}}.$$

Thus,
$$l \quad \widehat{r}(\mathcal{A}) < r(\mathcal{A}) < \widehat{r}(\mathcal{A})$$$$

SOS-based approximation algorithm!

Comments:

For 2d=2, this exactly reduces to our previous SDP! (SOS=nonnegativity for quadratics!)

•We are approximating an undecidable quantity to arbitrary accuracy in polynomial time!!

In the past couple of decades, approximation algorithms have been actively studied for a multitude of NP-hard problems. There are noticeably fewer studies on approximation algorithms for undecidable problems.

In particular, the area of integer polynomial optimization seems to be wide open.

Main messages of the course

Convex optimization is a very powerful tool in computational mathematics.

- Its power goes much beyond LPs we saw many examples and applications:
- In finance (minimum risk portfolio optimization)
- In machine learning (maximum-margin support vector machines)
- In combinatorial optimization (bounding NP-hard quantities, clique number, maxcut, vertec cover, etc.)
- In dynamics and control (finding stabilizing controllers)
- In information theory (bounding the zero-error capacity of a channel)
- In approximation algorithms (relax, round, bound)
- Robust optimization (even robust LP)

■Family of tractable convex programs: LP⊂QP ⊂QCQP ⊂SOCP ⊂SDP

- SDPs are the broadest in this class and the most powerful
- We emphasized the power of SDPs in algorithm design over LPs

Main messages of the course

Which optimization problems are tractable?

- Convexity is a good rule of thumb.
- But there are nonconvex problems that are easy (SVD, S-lemma, etc.)
- And convex problems that are hard (testing matrix copositivity or polynomial nonnegativity).
- In fact, we showed that every optimization problem can be "written" as a convex problem.
- Computational complexity theory is essential to answering this question!
- Hardness results
 - Theory of NP-completeness: gives overwhelming evidence for intractability of many optimization problems of interest (no polynomial-time algorithms)
 - Undecidability results rule out finite time algorithms unconditionally
- Dealing with intractable problems
 - Solving special cases exactly
 - Looking for bounds via convex relaxations
 - Approximation algorithms

Main messages of the course

Sum of squares optimization

- A very broad and powerful technique that turns any semialgebraic problem into a sequence of semidefinite programs
- This includes all of NP! But much more
- It needs absolutely no convexity assumptions!
- You should think of it anytime you see the inequality sign: \geq

Computation, computation, computation

- Be friends with CVX, YALMIP, and alike.
- Develop a computational taste in research
- As Stephen Boyd calls it: Work on "actionable theory", which means "theory which can be implemented as algorithms" (or shows limitations of algorithms)

The take-home assignment

- ■Tentatively scheduled to go live on Wednesday, May 17, at 9AM.
- Tentatively scheduled to be due on Monday, May 22, at 9 AM in the ORF 523 box in Sherrerd 123.
- •Georgina and I will hold office hours before the exam. Time TBA.

- No collaboration allowed.
- Can only use material from this course (notes, psets).
- Please use Piazza for clarification questions (and for clarification questions only)!
- No private questions on Piazza, no emails.
- More time than needed please keep your answers brief and to the point.
- Please keep an electronic copy of your exam.
- If you've been doing the problem sets and following lecture, you should be OK \bigcirc

Some open problems that came up in this course

(Many are high-risk (and high-payoff))

UNIVERSITY

1) Compute the Shannon capacity of C7. More generally, give better SDP-based upper bounds on the capacity than Lovasz.

Some open problems that came up in this course

2) Is there a polynomial time algorithm for output feedback stabilization?

Given matrices
$$A \in \mathbb{R}^{n \times n}$$
. $B \in \mathbb{R}^{n \times K}$, $C \in \mathbb{R}^{n \times n}$, does there exist a matrix $X \in \mathbb{R}^{k \times r}$ such that

A+BKC

is stable?

Some open problems that came up in this course

- 3) Can you find a local minimum of a quadratic program in polynomial time?
- 4) Construct a convex, nonnegative polynomial that is not a sum of squares.
- 5) Can you beat the GW 0.878 algorithm for MAXCUT?

Check your license plate, you never know!

Thank you! AAA May 4, 2017

56

References

References:

- -[Wo11] M.M. Wolf. Lecture notes on undecidability, 2011.
- -[Po08] B. Poonen. Undecidability in number theory, *Notices of the American Mathematical Society*, 2008.
- -[DPV08] S. Dasgupta, C. Papadimitriou, and U. Vazirani. Algorithms. McGraw Hill, 2008.

