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Common convex sets in optimization

Hyperplanes:                            •

Halfspaces:                           •

Euclidean balls:                                   2-norm)•

Ellipsoids:          
                             )•

(Prove convexity in each case.)

( here is an    symmetric matrix)
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Fancier convex sets

Many fundamental objects in mathematics have surprising convexity 
properties.

The set of (symmetric) positive semidefinite matrices:
  
                 

•

The set of nonnegative polynomials in  variables and of degree   •
(A polynomial          ) is nonnegative, if               

Image credit: [BV04]

For example, prove that the following two sets are convex.

e.g.,         
  
       

e.g.,              
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Easy to see that intersection of two convex sets is convex:•
                     convex,   convex       convex.

Proof:

Obviously, the union may not be convex:•

Polyhedra

Ubiquitous in optimization theory.○

Feasible sets of "linear programs".○

A polyhedron is the solution set of finitely many linear inequalities.•

Such sets are written in the form:•
                                                                      
where  is an    matrix, and  is an     vector.

These sets are convex: intersection of halfspaces   
      

where   
 is the  -th row of   

•

e.g.,    

      

    
 
 
 

  
     
     

     

 
 
 
 

 

Lec4p8, ORF523

   Lec4 Page 8    



Epigraph

We will see a couple; via epigraphs, and sublevel sets.•
Is there a connection between convex sets and convex functions?

Definition. The epigraph       of a function       is a subset of     

defined as
                                                                 

Theorem. A function         is convex if and only if its epigraph is convex 
(as a set).
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Convexity of sublevel sets

Definition. The  -sublevel set of a function       is the set
                                                        

Several sublevel 
sets (for different 
values of    

Theorem. If a function         is convex, then all its sublevel sets are 
convex sets.

Converse not true.•
A function whose sublevel sets are 
all convex is called quasiconvex.

•

Quasiconvex but not convex functions
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Convex optimization problems

A convex optimization problem is an optimization problem of the form

                                           

                                            
                                s.t.                   
                                                                   

where       
   are convex functions and     

   are affine functions.

Observe that for a convex optimization problem  is a convex set 
(why?)

○

Consider for example,               Then  is a convex set, 
but minimizing a convex function over  is not a convex 
optimization problem per our definition.



However, the same set can be represented as              
and then this would be a convex optimization problem with our 
definition.



But the converse is not true:○

Let  denote the feasible set:                           •

Here is another example of a convex feasible set that fails our definition of a 
convex optimization problem:

•
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Convex optimization problems (cont'd)

We require this stronger definition because otherwise many abstract and 
complex optimization problems can be formulated as optimization 
problems over a convex set. (Think, e.g., of the set of nonnegative 
polynomials.) The stronger definition is much closer to what we can 
actually solve efficiently. 

•

The software CVX that we'll be using ONLY accepts convex optimization 
problems defined as above.

•

Beware that [CZ13] uses the weaker and more abstract definition for a 
convex optimization problem (i.e., the definition that simply asks  to be 
a convex set.)

•

Acceptable constraints in CVX:

Convex  0•
Affine   0•
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Further reading for this lecture can include Chapter 2 of [BV04]. •

Notes:
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