# 3-sphere

 related topics {math, number, function} {math, energy, light} {line, north, south} {black, white, people} {group, member, jewish} {style, bgcolor, rowspan}

In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It consists of the set of points equidistant from a fixed central point in 4-dimensional Euclidean space. Just as an ordinary sphere (or 2-sphere) is a two dimensional surface that forms the boundary of a ball in three dimensions, a 3-sphere is an object with three dimensions that forms the boundary of a ball in four dimensions. A 3-sphere is an example of a 3-manifold.

A 3-sphere is also called a "glome" or a hypersphere, although the term hypersphere can in general describe any n-sphere for n ≥ 3.

## Contents

### Definition

In coordinates, a 3-sphere with center (C0C1C2C3) and radius r is the set of all points (x0x1x2x3) in real, 4-dimensional space (R4) such that

The 3-sphere centered at the origin with radius 1 is called the unit 3-sphere and is usually denoted S3:

It is often convenient to regard R4 as the space with 2 complex dimensions (C2) or the quaternions (H). The unit 3-sphere is then given by

or

The last description is often the most useful. It describes the 3-sphere as the set of all unit quaternionsquaternions with absolute value equal to unity. Just as the unit circle is important for planar polar coordinates, so the 3-sphere is important in the polar view of 4-space involved in quaternion multiplication. See polar decomposition of a quaternion for details of this development of the three-sphere.