Abstract factory pattern

related topics
{math, number, function}
{build, building, house}
{system, computer, user}
{@card@, make, design}
{theory, work, human}

The abstract factory pattern is a software design pattern that provides a way to encapsulate a group of individual factories that have a common theme. In normal usage, the client software creates a concrete implementation of the abstract factory and then uses the generic interfaces to create the concrete objects that are part of the theme. The client does not know (or care) which concrete objects it gets from each of these internal factories since it uses only the generic interfaces of their products. This pattern separates the details of implementation of a set of objects from their general usage.

An example of this would be an abstract factory class DocumentCreator that provides interfaces to create a number of products (e.g. createLetter() and createResume()). The system would have any number of derived concrete versions of the DocumentCreator class like FancyDocumentCreator or ModernDocumentCreator, each with a different implementation of createLetter() and createResume() that would create a corresponding object like FancyLetter or ModernResume. Each of these products is derived from a simple abstract class like Letter or Resume of which the client is aware. The client code would get an appropriate instance of the DocumentCreator and call its factory methods. Each of the resulting objects would be created from the same DocumentCreator implementation and would share a common theme (they would all be fancy or modern objects). The client would need to know how to handle only the abstract Letter or Resume class, not the specific version that it got from the concrete factory.

In software development, a Factory is the location in the code at which objects are constructed. The intent in employing the pattern is to insulate the creation of objects from their usage. This allows for new derived types to be introduced with no change to the code that uses the base class.

Use of this pattern makes it possible to interchange concrete classes without changing the code that uses them, even at runtime. However, employment of this pattern, as with similar design patterns, may result in unnecessary complexity and extra work in the initial writing of code. Used correctly the "extra work" pays off in the second instance of using the Factory.



The factory determines the actual concrete type of object to be created, and it is here that the object is actually created (in C++, for instance, by the new operator). However, the factory only returns an abstract pointer to the created concrete object.

Full article ▸

related documents
Static code analysis
Fibonacci coding
Waring's problem
Zeta distribution
Degenerate distribution
Pseudometric space
Geometric mean
Lex programming tool
Differential cryptanalysis
Heap (data structure)
Bernoulli process
Alexandroff extension
Byte-order mark
Domain (mathematics)
Algebraic extension
Alternating group
Residue (complex analysis)
Closed set
Binary operation
General number field sieve
Hamming distance
Steiner system
Quadratic programming
Malleability (cryptography)
Graph of a function