Active transport

related topics
{acid, form, water}
{disease, patient, cell}

Active transport is the movement of a substance against its concentration gradient (from low to high concentration). In all cells, this is usually concerned with accumulating high concentrations of molecules that the cell needs, such as ions, glucose, and amino acids. If the process uses chemical energy, such as from adenosine triphosphate (ATP), it is termed primary active transport. Secondary active transport involves the use of an electrochemical gradient. Active transport uses energy, unlike passive transport, which does not use any type of energy. Active transport is a good example of a process for which cells require energy. Examples of active transport include the uptake of glucose in the intestines in humans and the uptake of mineral ions into root hair cells of plants.



Specialized trans-membrane proteins recognize the substance and allows it access[1] (or, in the case of secondary transport, expend energy on forcing it) to cross the membrane when it otherwise would not, either because it is one to which the phospholipid bilayer of the membrane is impermeable or because it is moved in the direction of the concentration gradient. The last case, known as primary active transport, and the proteins involved in it as pumps, normally uses the chemical energy of ATP. The other cases, which usually derive their energy through exploitation of an electrochemical gradient, are known as secondary active transport and involve pore-forming proteins that form channels through the cell membrane.

Sometimes the system transports one substance in one direction at the same time as cotransporting another substance in the other direction. This is called antiport. Symport is the name if two substrates are being transported in the same direction across the membrane. Antiport and symport are associated with secondary active transport, meaning that one of the two substances are transported in the direction of their concentration gradient utilizing the energy derived from the transport of the second substance (mostly Na+, K+ or H+) down its concentration gradient.

Particles moving from areas of low concentration to areas of high concentration[2] (i.e., in the opposite direction as the concentration gradient) require specific trans-membrane carrier proteins. These proteins have receptors that bind to specific molecules (e.g., glucose) and thus transport them into the cell. Because energy is required for this process, it is known as 'active' transport. Examples of active transport include the transportation of sodium out of the cell and potassium into the cell by the sodium-potassium pump. Active transport often takes place in the internal lining of the small intestine.

Plants need to absorb mineral salts from the soil, but these salts exist in very dilute solution. Active transport enables these cells to take up salts from this dilute solution against the direction of the concentration gradient.

Full article ▸

related documents
Condensation polymer
Cell biology
Heavy metal (chemistry)
Transuranium element
Perchloric acid
Complementary DNA
Osmotic pressure
Vacuum flask
Wafer (electronics)
Reverse transcriptase
Sodium cyanide