Air-augmented rocket

related topics
{ship, engine, design}

Air-augmented rockets (also known as rocket-ejector, ramrocket, ducted rocket, integral rocket/ramjets, or ejector ramjets) use the supersonic exhaust of some kind of rocket engine to further compress air collected by ram effect during flight to use as additional working mass, leading to greater effective thrust for any given amount of fuel than either the rocket or a ramjet alone.

They represent a hybrid class of rocket/ramjet engines, similar to a ramjet, but able to give useful thrust from zero speed, and are also able in some cases to operate outside the atmosphere, with fuel efficiency not worse than both a comparable ramjet or rocket at every point.



In a conventional chemical rocket engine the rocket carries both its fuel and its oxidizer (the reactant chemical which releases the enormous internal energy in the fuel) with itself in flight. The chemical reaction between the fuel and the oxidizer produces reactant products which are nominally gasses at the pressures and temperatures in the rocket's combustion chamber. The reaction is also highly energetic (exothermic) releasing tremendous energy in the form of heat; that is imparted to the reactant products in the combustion chamber giving this mass enormous internal energy which; when expanded through a nozzle is capable of producing very high exhaust velocities. Sometimes the oxidizer and fuel are pre-mixed, as in a solid rocket. The combustion products are exhausted through a nozzle where they expand and cool. The exhaust is directed rearward through the nozzle, thereby producing a thrust forward. In this conventional design, the fuel/oxidizer mixture is both the working mass and energy source that accelerates it.

One method of increasing the overall performance of the system is to collect either the fuel or the oxidizer during flight. Fuel is hard to come by in the atmosphere, but oxidizer in the form of gaseous oxygen makes up 20% of the air and there are a number of designs that take advantage of this fact. These sorts of systems have been explored in the LACE concept.

Another idea is to collect the working mass instead. With an air-augmented rocket, an otherwise conventional rocket engine is mounted in the center of a long tube, open at the front. As the rocket moves through the atmosphere the air enters the front of the tube, where it is compressed via the ram effect. As it travels down the tube it is further compressed and mixed with the fuel-rich exhaust from the rocket engine, which heats the air much as a combustor would in a ramjet. In this way a fairly small rocket can be used to accelerate a much larger working mass than normally, leading to significantly higher thrust within the atmosphere.


The effectiveness of this simple method can be dramatic. Typical solid rockets have a specific impulse of about 260 seconds (2.5 kN·s/kg), but using the same fuel in an air-augmented design can improve this to over 500 seconds (4.9 kN·s/kg), a figure even the best hydrogen/oxygen engines can't match. This design can even be slightly more efficient than a ramjet as the exhaust from the rocket engine compresses the air more than a ramjet normally would; this raises the combustion efficiency as a longer, more efficient nozzle can be employed. Another advantage is that the rocket works even at zero forward speed, whereas a ramjet requires forward motion to feed air into the engine.


Full article ▸

related documents
Anti-ship missile
German Type XXIII submarine
Gatling gun
Cruise missile
Infantry fighting vehicle
Apollo 9
Fire balloon
Resolution class submarine
Shaped charge
Shenzhou spacecraft
Nuclear pulse propulsion
Area rule
Ohio class submarine
UH-60 Black Hawk
Extra-vehicular activity
5.56x45mm NATO
John Ericsson
Pennsylvania class battleship
Vanguard class submarine
Fat Man
Thermobaric weapon
Tripropellant rocket
Bathyscaphe Trieste
Intercontinental ballistic missile