Algebraic closure

related topics
{math, number, function}

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

Using Zorn's lemma, it can be shown that every field has an algebraic closure[1], and that the algebraic closure of a field K is unique up to an isomorphism that fixes every member of K. Because of this essential uniqueness, we often speak of the algebraic closure of K, rather than an algebraic closure of K.

The algebraic closure of a field K can be thought of as the largest algebraic extension of K. To see this, note that if L is any algebraic extension of K, then the algebraic closure of L is also an algebraic closure of K, and so L is contained within the algebraic closure of K. The algebraic closure of K is also the smallest algebraically closed field containing K, because if M is any algebraically closed field containing K, then the elements of M which are algebraic over K form an algebraic closure of K.

The algebraic closure of a field K has the same cardinality as K if K is infinite, and is countably infinite if K is finite.

Contents

Examples

  • There are many countable algebraically closed fields within the complex numbers, and strictly containing the field of algebraic numbers; these are the algebraic closures of transcendental extensions of the rational numbers, e.g. the algebraic closure of Q(π).

Separable closure

An algebraic closure Kalg of K contains a unique separable extension Ksep of K containing all (algebraic) separable extensions of K within Kalg. This subextension is called a separable closure of K. Since a separable extension of a separable extension is again separable, there are no finite separable extensions of Ksep, of degree > 1. Saying this another way, K is contained in a separably-closed algebraic extension field. It is essentially unique (up to isomorphism).

Full article ▸

related documents
NP-equivalent
Irreducible fraction
Urysohn's lemma
Bernoulli's inequality
Discrete probability distribution
Complete graph
Minkowski's theorem
Disjunctive normal form
Null set
Special functions
Inverse transform sampling
Automorphism
Field of fractions
Cipher
Noetherian ring
Unit interval
Unitary matrix
Euler's identity
Klein four-group
Euler number
Hyperplane
Ceva's theorem
Sum rule in integration
Class (set theory)
Parse tree
Entire function
Elias gamma coding
Just another Perl hacker
Rational root theorem
Linear function