Alloy

related topics
{acid, form, water}
{@card@, make, design}
{language, word, form}
{church, century, christian}

An alloy is a partial or complete solid solution of one or more elements in a metallic matrix. Complete solid solution alloys give single solid phase microstructure, while partial solutions give two or more phases that may be homogeneous in distribution depending on thermal (heat treatment) history. Alloys usually have different properties from those of the component elements.

Alloys' constituents are usually measured by mass.

Contents

Theory

Alloying one metal with other metal(s) or non-metal(s) often enhances its properties. For example, steel is stronger than iron, its primary element. The physical properties, such as density, reactivity, Young's modulus, and electrical and thermal conductivity, of an alloy may not differ greatly from those of its elements, but engineering properties such as tensile strength[1] and shear strength may be substantially different from those of the constituent materials. This is sometimes due to the sizes of the atoms in the alloy, since larger atoms exert a compressive force on neighboring atoms, and smaller atoms exert a tensile force on their neighbors, helping the alloy resist deformation. Sometimes alloys may exhibit marked differences in behavior even when small amounts of one element occur. For example, impurities in semi-conducting ferromagnetic alloys lead to different properties, as first predicted by White, Hogan, Suhl, Tian Abrie and Nakamura.[2][3] Some alloys are made by melting and mixing two or more metals. Bronze, an alloy of copper and tin, was the first alloy discovered, during the prehistoric period now known as the bronze age; it was harder than pure copper and originally used to make tools and weapons, but was later superseded by metals and alloys with better properties. In later times bronze has been used for ornaments, bells, statues, and bearings. Brass is an alloy made from copper and zinc.

Unlike pure metals, most alloys do not have a single melting point, but a melting range in which the material is a mixture of solid and liquid phases. The temperature at which melting begins is called the solidus, and the temperature when melting is just complete is called the liquidus. However, for most alloys there is a particular proportion of constituents (in rare cases two)—the eutectic mixture—which gives the alloy a unique melting point.

Full article ▸

related documents
Actinium
Perchloric acid
Complementary DNA
Allotropy
Berkelium
Heavy metal (chemistry)
Samarium
Pyrite
Microtubule
Hygroscopy
Electrode
Ductility
Active transport
Hematite
Cell biology
Wafer (electronics)
Protactinium
Condensation polymer
Tyrosine
Compounds of carbon
Rutile
Transuranium element
Peptidoglycan
Intron
Bicarbonate
Promethium
Diamondoid
Humus
Osmotic pressure
Rotaxane