related topics
{system, computer, user}
{math, energy, light}
{@card@, make, design}

An ammeter is a measuring instrument used to measure the electric current in a circuit. Electric currents are measured in amperes (A), hence the name. Instruments used to measure smaller currents, in the milliampere or microampere range, are designated as milliammeters or microammeters. Early ammeters were laboratory instruments which relied on the Earth's magnetic field for operation. By the late 19th century, improved instruments were designed which could be mounted in any position and allowed accurate measurements in electric power systems.



The relation between electric current, magnetic fields and physical forces was first noted by Hans Christian Ørsted who, in 1820, observed a compass needle was deflected from pointing North when a current flowed in an adjacent wire. The tangent galvanometer was used to measure currents using this effect, where the restoring force returning the pointer to the zero position was provided by the Earth's magnetic field. This made these instruments usable only when aligned with the Earth's field. Sensitivity of the instrument was increased by using additional turns of wire to multiply the effect – the instruments were called "multipliers". [1]


The D'Arsonval galvanometer is a moving coil ammeter. It uses magnetic deflection, where current passing through a coil causes the coil to move in a magnetic field. The voltage drop across the coil is kept to a minimum to minimize resistance across the ammeter in any circuit into which it is inserted. The modern form of this instrument was developed by Edward Weston, and uses two spiral springs to provide the restoring force. By maintaining a uniform air gap between the iron core of the instrument and the poles of its permanent magnet, the instrument has good linearity and accuracy. Basic meter movements can have full-scale deflection for currents from about 25 microamperes to 10 milliamperes and have linear scales. [2].

Moving iron ammeters use a piece of iron which moves when acted upon by the electromagnetic force of a fixed coil of wire. This type of meter responds to both direct and alternating currents (as opposed to the moving coil ammeter, which works on direct current only). The iron element consists of a moving vane attached to a pointer, and a fixed vane, surrounded by a coil. As alternating or direct current flows through the coil and induces a magnetic field in both vanes, the vanes repel each other and the moving vane deflects against the restoring force provided by fine helical springs. [2] The non-linear scale of these meters makes them unpopular.

Full article ▸

related documents
Volt-amperes reactive
Electronic oscillator
Total harmonic distortion
Characteristic impedance
Phase noise
High-pass filter
Persistence of vision
Optical switch
C band
Double-sideband suppressed-carrier transmission
Satellite constellation
Phase inversion
Digital micromirror device
Karplus-Strong string synthesis
Mouse gesture
IBM 8514
Personal Area Network
AMOS (programming language)
Evolution (software)
Carrier sense multiple access with collision detection