Antiprism

related topics
{math, energy, light}
{math, number, function}
{@card@, make, design}
{style, bgcolor, rowspan}
{group, member, jewish}

In geometry, an n-sided antiprism is a polyhedron composed of two parallel copies of some particular n-sided polygon, connected by an alternating band of triangles. Antiprisms are a subclass of the prismatoids.

Antiprisms are similar to prisms except the bases are twisted relative to each other, and that the side faces are triangles, rather than quadrilaterals.

In the case of a regular n-sided base, one usually considers the case where its copy is twisted by an angle 180°/n. Extra regularity is obtained by the line connecting the base centers being perpendicular to the base planes, making it a right antiprism. It has, apart from the base faces, 2n isosceles triangles as faces.

Contents

Uniform antiprism

A uniform antiprism has, apart from the base faces, 2n equilateral triangles as faces. They form an infinite series of vertex-uniform polyhedra, as do the uniform prisms. For n=2 we have as degenerate case the regular tetrahedron, and for n=3 the non-degenerate regular octahedron.

The dual polyhedra of the antiprisms are the trapezohedra. Their existence was first discussed and their name was coined by Johannes Kepler.

Cartesian coordinates

Cartesian coordinates for the vertices of a right antiprism with n-gonal bases and isosceles triangles are

with k ranging from 0 to 2n-1; if the triangles are equilateral,

Volume and surface area

Let a be the edge-length of a uniform antiprism. Then the volume is

and the surface area is

Symmetry

The symmetry group of a right n-sided antiprism with regular base and isosceles side faces is Dnd of order 4n, except in the case of a tetrahedron, which has the larger symmetry group Td of order 24, which has three versions of D2d as subgroups, and the octahedron, which has the larger symmetry group Oh of order 48, which has four versions of D3d as subgroups.

The symmetry group contains inversion if and only if n is odd.

The rotation group is Dn of order 2n, except in the case of a tetrahedron, which has the larger rotation group T of order 12, which has three versions of D2 as subgroups, and the octahedron, which has the larger rotation group O of order 24, which has four versions of D3 as subgroups.

See also

Full article ▸

related documents
Bifurcation diagram
Triangle wave
List of brightest stars
Polychoron
Perimeter
Grashof number
Circular definition
Péclet number
Lorenz attractor
Ulam spiral
Neper
Diameter
Mrs. Miniver's problem
Feigenbaum constants
Knife-edge effect
Optical density
Central moment
Log-periodic antenna
Ejnar Hertzsprung
Fornax
Desdemona (moon)
Umbriel (moon)
Pulse duration
Igor Tamm
Faraday constant
Primary mirror
Carina (constellation)
Bistability
Cuboctahedron
Menelaus of Alexandria