In graph theory, breadthfirst search (BFS) is a graph search algorithm that begins at the root node and explores all the neighboring nodes. Then for each of those nearest nodes, it explores their unexplored neighbor nodes, and so on, until it finds the goal.
Contents
How it works
BFS is an uninformed search method that aims to expand and examine all nodes of a graph or combination of sequences by systematically searching through every solution. In other words, it exhaustively searches the entire graph or sequence without considering the goal until it finds it. It does not use a heuristic algorithm.
From the standpoint of the algorithm, all child nodes obtained by expanding a node are added to a FIFO (i.e., First In, First Out) queue. In typical implementations, nodes that have not yet been examined for their neighbors are placed in some container (such as a queue or linked list) called "open" and then once examined are placed in the container "closed".
Algorithm (informal)
 If the element sought is found in this node, quit the search and return a result.
 Otherwise enqueue any successors (the direct child nodes) that have not yet been discovered.
Note: Using a stack instead of a queue would turn this algorithm into a depthfirst search.
Pseudocode
1 procedure BFS(Graph,source):
2 create a queue Q
3 enqueue source onto Q
4 mark source
5 while Q is not empty:
6 dequeue an item from Q into v
7 for each edge e incident on v in Graph:
8 let w be the other end of e
9 if w is not marked:
10 mark w
11 enqueue w onto Q
[edit] Features
[edit] Space complexity
Since all of the nodes of a level must be saved until their child nodes in the next level have been generated, the space complexity is proportional to the number of nodes at the deepest level. Given a branching factor b and graph depth d the asymptotic space complexity is the number of nodes at the deepest level, O(b^{d}). When the number of vertices and edges in the graph are known ahead of time, the space complexity can also be expressed as O(  E  +  V  ) where  E  is the cardinality of the set of edges (the number of edges), and  V  is the cardinality of the set of vertices. In the worst case the graph has a depth of 1 and all vertices must be stored. Since it is exponential in the depth of the graph, breadthfirst search is often impractical for large problems on systems with bounded space.
[edit] Time complexity
Since in the worst case breadthfirst search has to consider all paths to all possible nodes the time complexity of breadthfirst search is which is O(b^{d}). The time complexity can also be expressed as O(  E  +  V  ) since every vertex and every edge will be explored in the worst case.
[edit] Completeness
Breadthfirst search is complete. This means that if there is a solution, breadthfirst search will find it regardless of the kind of graph. However, if the graph is infinite and there is no solution breadthfirst search will diverge.
[edit] Proof of completeness
If the shallowest goal node is at some finite depth say d, breadthfirst search will eventually find it after expanding all shallower nodes (provided that the branching factor b is finite).^{[1]}
[edit] Optimality
For unitstep cost, breadthfirst search is optimal. In general breadthfirst search is not optimal since it always returns the result with the fewest edges between the start node and the goal node. If the graph is a weighted graph, and therefore has costs associated with each step, a goal next to the start does not have to be the cheapest goal available. This problem is solved by improving breadthfirst search to uniformcost search which considers the path costs. Nevertheless, if the graph is not weighted, and therefore all step costs are equal, breadthfirst search will find the nearest and the best solution.
[edit] Bias towards nodes of high degree
It has been empirically observed (and analytically shown for random graphs) that incomplete breadthfirst search is biased towards nodes of high degree. This makes a breadthfirst search sample of a graph very difficult to interpret. For example, a breadthfirst sample of 1 million nodes in Facebook (less than 1% of the entire graph) overestimates the average node degree by 240%.^{[2]}
[edit] Applications
Breadthfirst search can be used to solve many problems in graph theory, for example:
[edit] Finding connected components
The set of nodes reached by a BFS (breadthfirst search) form the connected component containing the starting node.
[edit] Testing bipartiteness
BFS can be used to test bipartiteness, by starting the search at any vertex and giving alternating labels to the vertices visited during the search. That is, give label 0 to the starting vertex, 1 to all its neighbours, 0 to those neighbours' neighbours, and so on. If at any step a vertex has (visited) neighbours with the same label as itself, then the graph is not bipartite. If the search ends without such a situation occurring, then the graph is bipartite.
[edit] See also
[edit] References
Full article ▸
