Chrominance

related topics
{system, computer, user}
{math, energy, light}
{@card@, make, design}
{mi², represent, 1st}

Chrominance (chroma or C for short) is the signal used in video systems to convey the color information of the picture, separately from the accompanying luma signal (or Y for short). Chrominance is usually represented as two color-difference components: U = B' − Y' (blue − luma) and V = R' − Y' (red − luma). Each of these difference components may have scale factors and offsets applied to it, as specified by the applicable video standard.

In composite video signals, the U and V signals modulate a color subcarrier signal, and the result is referred to as the chrominance signal; the phase and amplitude of this modulated chrominance signal correspond approximately to the hue and saturation of the color. In digital-video and still-image color spaces such as Y'CbCr, the luma and chrominance components are digital sample values.

Separating RGB color signals into luma and chrominance allows the bandwidth of each to be determined separately. Typically, the chrominance bandwidth is reduced in analog composite video by reducing the bandwidth of a modulated color subcarrier, and in digital systems by chroma subsampling.

Contents

History

The idea of transmitting a color television signal with distinct luma and chrominance components originated with Georges Valensi, who patented the idea in 1938.[1] Valensi's patent application described:

(t)he use of two channels, one transmitting the predominating color (signal T), and the other the mean brilliance (signal t) output from a single television transmitter to be received not only by color television receivers provided with the necessary more expensive equipment, but also by the ordinary type of television receiver which is more numerous and less expensive and which reproduces the pictures in black and white only.

Previous schemes for color television systems, which were incompatible with existing monochrome receivers, transmitted RGB signals in various ways.

Television standards

In analog television, chrominance is encoded into a video signal using a subcarrier frequency. Depending on the video standard, the chrominance subcarrier may be either quadrature-amplitude-modulated (NTSC and PAL) or frequency-modulated (SECAM).

In the PAL system, the color subcarrier is 4.43 MHz above the video carrier, while in the NTSC system it is 3.58 MHz above the video carrier. The NTSC and PAL standards are the most commonly used, although there are other video standards that employ different subcarrier frequencies. For example, PAL-M (Brazil) uses a 3.58 MHz subcarrier, and SECAM uses two different frequencies, 4.250 MHz and 4.40625 MHz above the video carrier.

Full article ▸

related documents
Capacitive coupling
Composite video
Internetworking
Duron
Real-time operating system
Apple IIe Card
RAM disk
Picture archiving and communication system
Frequency-shift keying
Very-large-scale integration
Motorola 68020
Chaffing and winnowing
Break key
Digital image processing
Open Systems Interconnection
Sideband
S-100 bus
Audio signal processing
Noise
Direct-sequence spread spectrum
IRIX
Tagged Image File Format
Cambridge Z88
Intel 80286
Channel access method
Telephony Application Programming Interface
COMSEC
ACCESS.bus
Mbox
Web browser