Connection Machine

related topics
{system, computer, user}
{@card@, make, design}
{math, number, function}
{work, book, publish}
{theory, work, human}
{island, water, area}
{game, team, player}

The Connection Machine was a series of supercomputers that grew out of Danny Hillis' research in the early 1980s at MIT on alternatives to the traditional von Neumann architecture of computation. The Connection Machine was originally intended for applications in artificial intelligence and symbolic processing, but later versions found greater success in the field of computational science.



Danny Hillis' original thesis paper on which the CM-1 Connection Machine was based is The Connection Machine (MIT Press Series in Artificial Intelligence) (ISBN 0-262-08157-1). The title is out of print as of 2005. The book provides an overview of the philosophy, architecture and software for the Connection Machine, including data routing between CPU nodes, memory handling, Lisp programming for parallel machines, etc.


Danny Hillis and Sheryl Handler founded Thinking Machines in Waltham, Massachusetts (it was later moved to Cambridge, Massachusetts) in 1983 and assembled a team to develop the CM-1 Connection Machine. This was a "massively parallel" hypercubic arrangement of thousands of microprocessors, each with its own 4 kbits of RAM, which together executed in a SIMD fashion. The CM-1, depending on the configuration, had as many as 65,536 processors. The individual processors were extremely simple, processing one bit at a time.

The CM-1 and CM-2 took the form of a cube 1.5 meters on a side, divided equally into eight smaller cubes. Each sub-cube contained 16 printed circuit boards and a main processor called a sequencer. Each printed circuit board contained 32 chips. Each chip contained a communication channel called a router, 16 processors, 16 RAMs. The CM-1 as a whole had a hypercubic routing network, a main RAM, and an input/output processor. It was connected to a switching device called a nexus.

In order to improve its commercial viability, the CM-2, launched in 1987, added Weitek 3132 floating-point numeric co-processors and more RAM to the system. 32 of the original one-bit processors shared each numeric processor. The CM-2 could be configured with up to 512 MB of RAM, and a RAID hard disk array, called a DataVault, of up to 25 GB.

Full article ▸

related documents
Bit stuffing
V5 interface
Commodore 1571
Amiga Advanced Graphics Architecture
Network interface device
Amiga Chip RAM
Remote concentrator
Signal generator
Automatic call distributor
Image compression
Time transfer
Frequency-division multiplexing
Wireless broadband
Talk (software)
Direct current
ISM band
Backward compatibility
Bit blit
5ESS switch
Williams tube
Internet Control Message Protocol
Samba (software)
Power Mac G4 Cube