Data Link Layer

related topics
{system, computer, user}
{math, number, function}
{area, community, home}
{style, bgcolor, rowspan}
{service, military, aircraft}
{line, north, south}
{language, word, form}
{household, population, family}

The Data Link Layer is Layer 2 of the seven-layer OSI model of computer networking. It corresponds to, or is part of the link layer of the TCP/IP reference model.

The Data Link Layer is the protocol layer which transfers data between adjacent network nodes in a wide area network or between nodes on the same local area network segment[1]. The Data Link Layer provides the functional and procedural means to transfer data between network entities and might provide the means to detect and possibly correct errors that may occur in the Physical Layer. Examples of data link protocols are Ethernet for local area networks (multi-node), the Point-to-Point Protocol (PPP), HDLC and ADCCP for point-to-point (dual-node) connections.

The Data Link Layer is concerned with local delivery of frames between devices on the same LAN. Data Link frames, as these protocol data units are called, do not cross the boundaries of a local network. Inter-network routing and global addressing are higher layer functions, allowing Data Link protocols to focus on local delivery, addressing, and media arbitration. In this way, the Data Link layer is analogous to a neighborhood traffic cop; it endeavors to arbitrate between parties contending for access to a medium.

When devices attempt to use a medium simultaneously, frame collisions occur. Data Link protocols specify how devices detect and recover from such collisions, and may provide mechanisms to reduce or prevent them.

Delivery of frames by layer 2 devices is affected through the use of unambiguous hardware addresses. A frame's header contains source and destination addresses that indicate which device originated the frame and which device is expected to receive and process it. In contrast to the hierarchical and routable addresses of the network layer, layer 2 addresses are flat, meaning that no part of the address can be used to identify the logical or physical group to which the address belongs.

The data link thus provides data transfer across the physical link. That transfer can be reliable or unreliable; many data link protocols do not have acknowledgments of successful frame reception and acceptance, and some data link protocols might not even have any form of checksum to check for transmission errors. In those cases, higher-level protocols must provide flow control, error checking, and acknowledgments and retransmission.

In some networks, such as IEEE 802 local area networks, the Data Link Layer is described in more detail with Media Access Control (MAC) and Logical Link Control (LLC) sublayers; this means that the IEEE 802.2 LLC protocol can be used with all of the IEEE 802 MAC layers, such as Ethernet, token ring, IEEE 802.11, etc., as well as with some non-802 MAC layers such as FDDI. Other Data Link Layer protocols, such as HDLC, are specified to include both sublayers, although some other protocols, such as Cisco HDLC, use HDLC's low-level framing as a MAC layer in combination with a different LLC layer. In the ITU-T standard, which provides a way to create a high-speed (up to 1 Gigabit/s) Local area network using existing home wiring (power lines, phone lines and coaxial cables), the Data Link Layer is divided into three sub-layers (Application Protocol Convergence, Logical Link Control and Medium Access Control).

Full article ▸

related documents
Computer networking
File server
IBM System/370
LAN switching
General Packet Radio Service
Video CD
Hercules Graphics Card
Gigabit Ethernet
Computer display standard
Video Graphics Array
Signaling System 7
Disk image
Slow-scan television
Exidy Sorcerer
High fidelity
IBM AIX (operating system)
Digital Visual Interface
Apple Desktop Bus
Digital Audio Tape
Blue Gene
Terminate and Stay Resident
Amiga 600
Internet Message Access Protocol
Magnetic tape
Revision control
GE-600 series