Data structure

related topics
{math, number, function}
{system, computer, user}
{theory, work, human}
{build, building, house}
{group, member, jewish}

In computer science, a data structure is a particular way of storing and organizing data in a computer so that it can be used efficiently.[1][2]

Different kinds of data structures are suited to different kinds of applications, and some are highly specialized to specific tasks. For example, B-trees are particularly well-suited for implementation of databases, while compiler implementations usually use hash tables to look up identifiers.

Data structures are used in almost every program or software system. Specific data structures are essential ingredients of many efficient algorithms, and make possible the management of huge amounts of data, such as large databases and internet indexing services. Some formal design methods and programming languages emphasize data structures, rather than algorithms, as the key organizing factor in software design.

Contents

Basic principles

Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory, specified by an address — a bit string that can be itself stored in memory and manipulated by the program. Thus the record and array data structures are based on computing the addresses of data items with arithmetic operations; while the linked data structures are based on storing addresses of data items within the structure itself. Many data structures use both principles, sometimes combined in non-trivial ways (as in XOR linking)

The implementation of a data structure usually requires writing a set of procedures that create and manipulate instances of that structure. The efficiency of a data structure cannot be analyzed separately from those operations. This observation motivates the theoretical concept of an abstract data type, a data structure that is defined indirectly by the operations that may be performed on it, and the mathematical properties of those operations (including their space and time cost).

Language support

Assembly languages and some low-level languages, such as BCPL, generally lack support for data structures. Many high-level programming languages, on the other hand, have special syntax or other built-in support for certain data structures, such as vectors (one-dimensional arrays) in the C language, multi-dimensional arrays in Pascal, linked lists in Common Lisp, and hash tables in Perl and in Python. Many languages also provide basic facilities such as references and the definition record data types, that programmers can use to build arbitrarily complex structures.

Full article ▸

related documents
Java API for XML Processing
Rich Text Format
C shell
Bytecode
Dynamic HTML
Blowfish (cipher)
Dekker's algorithm
Occam (programming language)
Tiny BASIC
Tcl
Mercury (programming language)
Java applet
Non-deterministic Turing machine
Interchange File Format
Data type
Pliant
World file
NC (complexity)
Meta-Object Facility
MOO (programming language)
AIML
Denormalization
Serial number
Single precision
Java Naming and Directory Interface
Merge algorithm
Initialization vector
Lex programming tool
Data integrity
Client-side scripting