related topics
{acid, form, water}
{disease, patient, cell}

Deamination is the removal of an amine group from a molecule. Enzymes which catalyse this reaction are called deaminases.

In the human body, deamination takes place primarily in the liver, however glutamate is also deaminated in the kidneys. Deamination is the process by which amino acids are broken down if there is an excess of protein intake. The amino group is removed from the amino acid and converted to ammonia. The rest of the amino acid is made up of mostly carbon and hydrogen, and is recycled or oxidized for energy. Ammonia is toxic to the human system, and enzymes convert it to urea or uric acid by addition of carbon dioxide molecules (which is not considered a deamination process) in the urea cycle, which also takes place in the liver. Urea and uric acid can safely diffuse into the blood and then be excreted in urine.


Deamination reactions in DNA


Spontaneous deamination is the hydrolysis reaction of cytosine into uracil, releasing ammonia in the process. This can occur in vitro through the use of bisulfite, which converts cytosine, but not 5-methylcytosine. This property has allowed researchers to sequence methylated DNA to distinguish non-methylated cytosine (shown up as uracil) and methylated cytosine (unaltered).

In DNA, this spontaneous deamination is corrected for by the removal of uracil (product of cytosine deamination and not part of DNA) by uracil-DNA glycosylase, generating an abasic (AP) site. The resulting abasic site is then recognised by enzymes(AP endonucleases) that break a phosphodiester bond in the DNA, permitting the repair of the resulting lesion by replacement with another cytosine. A Family A DNA Polymerase may perform this replacement via nick translation, a terminal excision reaction by its 3'-->5' exonuclease activity, followed by a fill-in reaction by its polymerase activity. DNA ligase then forms a phosphodiester bond to seal the resulting nicked duplex product, which now includes a new, correct cytosine. [See Base_excision_repair ]


Spontaneous deamination of 5-methylcytosine results in thymine and ammonia. This is the most common single nucleotide mutation. In DNA, this reaction cannot be corrected because the repair mechanisms do not recognize thymine as erroneous (as opposed to uracil), and, unless it affects the function of the gene, the mutation will persist. This flaw in the repair mechanism contributes to the rarity of CpG sites in the eukaryotic genome.

Full article ▸

related documents
Decay product
Facilitated diffusion
Stable isotope
Succinic acid
Peptide bond
Pyruvic acid
Aerobic organism
Methyl group
Photosynthetic pigment
Ammonium perchlorate
Heterocyclic compound
Nitronium ion
Xanthine oxidase
Ozone layer
Cytochrome c