Disk read-and-write head

related topics
{@card@, make, design}
{system, computer, user}
{math, energy, light}
{work, book, publish}
{film, series, show}
{ship, engine, design}

Disk read/write heads are the small parts of a disk drive, that move above the disk platter and transform platter's magnetic field into electrical current (read the disk) or vice versa – transform electrical current into magnetic field (write the disk).[1] The heads have gone through a number of changes over the years.



In a hard drive, the heads 'fly' above the disk surface with clearance of as little as 3 nanometres. The "flying height" is constantly decreasing to enable higher areal density. The flying height of the head is controlled by the design of an air-bearing etched onto the disk-facing surface of the slider. The role of the air bearing is to maintain the flying height constant as the head moves over the surface of the disk. If the head hits the disk's surface, a catastrophic head crash can result.

Traditional heads

The heads themselves started out similar to the heads in tape recorders—simple devices made out of a tiny C-shaped piece of highly magnetizable material called ferrite wrapped in a fine wire coil. When writing, the coil is energized, a strong magnetic field forms in the gap of the C, and the recording surface adjacent to the gap is magnetized. When reading, the magnetized material rotates past the heads, the ferrite core concentrates the field, and a current is generated in the coil. The gap where the field is very strong and quite narrow. That gap is roughly equal to the thickness of the magnetic media on the recording surface. The gap determines the minimum size of a recorded area on the disk. Ferrite heads are large, and write fairly large features. They must also be flown fairly far from the surface thus requiring stronger fields and larger heads.

Metal in Gap (MIG)

Metal in Gap (MIG) heads are ferrite heads with a small piece of metal in the head gap that concentrates the field. This allows smaller features to be read and written. MIG heads were replaced with thin film heads. Thin film heads were electronically similar to ferrite heads and used the same physics. But they were manufactured using photolithographic processes and thin films of material that allowed fine features to be created. Thin film heads were much smaller than MIG heads and therefore allowed smaller recorded features to be used. Thin film heads allowed 3.5 inch drives to reach 4GB storage capacities in 1995. The geometry of the head gap was a compromise between what worked best for reading and what worked best for writing.

Full article ▸

related documents
Hard disk platter
Mandrel wrapping
Faraday cage
Daisy wheel printer
Electronic color code
Main distribution frame
Netpbm format
Group delay and phase delay
Quartz clock
Bubble Wrap
Graphics tablet
Thread (Pern)
C band
Haidinger's brush
Orbital (The Culture)
Gravis PC GamePad
Power tool
Paper shredder
Grade (bouldering)
Surveyor 1
X window manager
Natural Color System