Electro-optic effect

related topics
{math, energy, light}
{system, computer, user}
{rate, high, increase}

An electro-optic effect is a change in the optical properties of a material in response to an electric field that varies slowly compared with the frequency of light. The term encompasses a number of distinct phenomena, which can be subdivided into

  • b) change of the refractive index
    • Pockels effect (or linear electro-optic effect): change in the refractive index linearly proportional to the electric field. Only certain crystalline solids show the Pockels effect, as it requires lack of inversion symmetry
    • Kerr effect (or quadratic electro-optic effect, QEO effect): change in the refractive index proportional to the square of the electric field. All materials display the Kerr effect, with varying magnitudes, but it is generally much weaker than the Pockels effect
    • electro-gyration: change in the optical activity.

Changes in absorption can have a strong effect on refractive index for wavelengths near the absorption edge, due to the Kramers–Kronig relation.

Using a less strict definition of the electro-optic effect allowing also electric fields oscillating at optical frequencies, one could also include nonlinear absorption (absorption depends on the light intensity) to category a) and the optical Kerr effect (refractive index depends on the light intensity) to category b). Combined with the photoeffect and photoconductivity, the electro-optic effect gives rise to the photorefractive effect.

The term "electro-optic" is often erroneously used as a synonym for "optoelectronic".

Contents

Main applications

Electro-optic modulators

Electro-optic modulators are usually built with electro-optic crystals exhibiting the Pockels effect. The transmitted beam is phase modulated with the electric signal applied to the crystal. Amplitude modulators can be built by putting the electro-optic crystal between two linear polarizers or in one path of a Mach–Zehnder interferometer. Additionally, Amplitude modulators can be constructed by deflecting the beam into and out of a small aperture such as a fiber. This design can be low loss (<3 dB) and polarization independent depending on the crystal configuration.

Full article ▸

related documents
Gegenschein
Albireo
Antenna effective area
Rheology
Angular acceleration
Linear polarization
Spheroid
North Star
Atomic, molecular, and optical physics
Positron
Ohmmeter
Atlas (moon)
Frustum
Nova
Transport phenomena
Electrical length
Iapetus (moon)
Collision
Diurnal motion
Fomalhaut
Space observatory
Superluminal communication
Cutback technique
Dynamic mechanical spectroscopy
Orrery
Naiad (moon)
Gouraud shading
Pascal (pressure)
Wide angle X-ray scattering
Maunder Minimum