Electrolyte

related topics
{acid, form, water}
{disease, patient, cell}
{car, race, vehicle}

In chemistry, an electrolyte is any substance containing free ions that make the substance electrically conductive. The most typical electrolyte is an ionic solution, but molten electrolytes and solid electrolytes are also possible.

Commonly, electrolytes are solutions of acids, bases or salts. Furthermore, some gases may act as electrolytes under conditions of high temperature or low pressure. Electrolyte solutions can also result from the dissolution of some biological (e.g., DNA, polypeptides) and synthetic polymers (e.g., polystyrene sulfonate), termed polyelectrolytes, which contain charged functional groups.

Electrolyte solutions are normally formed when a salt is placed into a solvent such as water and the individual components dissociate due to the thermodynamic interactions between solvent and solute molecules, in a process called solvation. For example, when table salt, NaCl, is placed in water, the salt (a solid) dissolves into its component ions, according to the dissociation reaction

It is also possible for substances to react with water producing ions, e.g., carbon dioxide gas dissolves in water to produce a solution which contains hydronium, carbonate, and hydrogen carbonate ions.

Note that molten salts can be electrolytes as well. For instance, when sodium chloride is molten, the liquid conducts electricity.

An electrolyte in a solution may be described as concentrated if it has a high concentration of ions, or dilute if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the electrolyte is strong; if most of the solute does not dissociate, the electrolyte is weak. The properties of electrolytes may be exploited using electrolysis to extract constituent elements and compounds contained within the solution.

Contents

Physiological importance

In physiology, the primary ions of electrolytes are sodium(Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl), hydrogen phosphate (HPO42−), and hydrogen carbonate (HCO3). The electric charge symbols of plus (+) and minus (−) indicate that the substance in question is ionic in nature and has an imbalanced distribution of electrons, the result of chemical dissociation.

All known higher lifeforms require a subtle and complex electrolyte balance between the intracellular and extracellular milieu. In particular, the maintenance of precise osmotic gradients of electrolytes is important. Such gradients affect and regulate the hydration of the body as well as blood pH, and are critical for nerve and muscle function. Various mechanisms exist in living species that keep the concentrations of different electrolytes under tight control.

Full article ▸

related documents
Chloroform
Borax
Alcohol dehydrogenase
Organic acid
Heme
Plasmid
Carbon-14
Southern blot
Pyroxene
Electron counting
Denaturation (biochemistry)
Phosgene
Solder
Ziegler-Natta catalyst
Nuclear technology
Nucleolus
Island of stability
Cubic zirconia
Erbium
Alum
Nitroglycerin
Gel
Gel electrophoresis
Solvation
Beta sheet
Organelle
Carbonic acid
Neon
Ion channel
Neodymium