Entscheidungsproblem

related topics
{math, number, function}
{theory, work, human}
{law, state, case}

In mathematics, the Entscheidungsproblem (pronounced [ɛntˈʃaɪdʊŋspʁoˌbleːm], German for 'decision problem') is a challenge posed by David Hilbert in 1928. The Entscheidungsproblem asks for an algorithm that will take as input a description of a formal language and a mathematical statement in the language and produce as output either "True" or "False" according to whether the statement is true or false. The algorithm need not justify its answer, nor provide a proof, so long as it is always correct. Such an algorithm would be able to decide, for example, whether statements such as Goldbach's conjecture or the Riemann hypothesis are true, even though no proof or disproof of these statements is known. The Entscheidungsproblem has often been identified in particular with the decision problem for first-order logic (that is, the problem of algorithmically determining whether a first-order statement is universally valid).

In 1936 and 1937 Alonzo Church and Alan Turing respectively[1], published independent papers showing that it is impossible to decide algorithmically whether statements in arithmetic are true or false, and thus a general solution to the Entscheidungsproblem is impossible. This result is now known as Church's Theorem or the Church–Turing Theorem (not to be confused with the Church–Turing thesis).

Contents

History of the problem

The origin of the Entscheidungsproblem goes back to Gottfried Leibniz, who in the seventeenth century, after having constructed a successful mechanical calculating machine, dreamt of building a machine that could manipulate symbols in order to determine the truth values of mathematical statements (Davis 2000: pp. 3–20). He realized that the first step would have to be a clean formal language, and much of his subsequent work was directed towards that goal. In 1928, David Hilbert and Wilhelm Ackermann posed the question in the form outlined above.

In continuation of his "program" with which he challenged the mathematics community in 1900, at a 1928 international conference David Hilbert asked three questions, the third of which became known as "Hilbert's Entscheidungsproblem" (Hodges p. 91). As late as 1930 he believed that there would be no such thing as an unsolvable problem (Hodges p. 92, quoting from Hilbert).

Negative answer

Before the question could be answered, the notion of "algorithm" had to be formally defined. This was done by Alonzo Church in 1936 with the concept of "effective calculability" based on his λ calculus and by Alan Turing in the same year with his concept of Turing machines. It was later recognized that these are equivalent models of computation.

Full article ▸

related documents
Boosting
Tree structure
Axiom of union
Contraction mapping
Normal morphism
Blum Blum Shub
LALR parser
Sophie Germain prime
Complete measure
Nearest neighbour algorithm
Best-first search
Baire category theorem
Lyapunov fractal
Mutual recursion
Characteristic subgroup
Group homomorphism
Up to
Hamiltonian path problem
Composite number
Partition of unity
Linear congruence theorem
Complete category
Category of sets
Multiple inheritance
Permutation group
Zhu Shijie
AVL tree
Elias delta coding
Brun's constant
Sed