Extension (semantics)

related topics
{math, number, function}
{theory, work, human}
{specie, animal, plant}
{woman, child, man}

In any of several studies that treat the use of signs - for example, in linguistics, logic, mathematics, semantics, and semiotics - the extension of a concept, idea, or sign consists of the things to which it applies, in contrast with its comprehension or intension, which consists very roughly of the ideas, properties, or corresponding signs that are implied or suggested by the concept in question.

In philosophical semantics or the philosophy of language, the 'extension' of a concept or expression is the set of things it extends to, or applies to, if it is the sort of concept or expression that a single object by itself can satisfy. Concepts and expressions of this sort are monadic or "one-place" concepts and expressions.

So the extension of the word "dog" is the set of all (past, present and future) dogs in the world: the set includes Fido, Rover, Lassie, Rex, and so on. The extension of the phrase "Wikipedia reader" includes each person who has ever read Wikipedia, including you.

The extension of a whole statement, as opposed to a word or phrase, is defined (since Frege 1892) as its truth value. So the extension of "Lassie is famous" is the logical value 'true', since Lassie 'is' famous.

Some concepts and expressions are such that they don't apply to objects individually, but rather serve to relate objects to objects. For example, the words "before" and "after" do not apply to objects individually — it makes no sense to say "Jim is before" or "Jim is after" — but to one thing in relation to another, as in "The wedding is before the reception" and "The reception is after the wedding". Such "relational" or "polyadic" ("many-place") concepts and expressions have, for their extension, the set of all sequences of objects that satisfy the concept or expression in question. So the extension of "before" is the set of all (ordered) pairs of objects such that the first one is before the second one.

Contents

Mathematics

In mathematics, the 'extension' of a mathematical concept is the set that is specified by that concept.

For example, the extension of a function is a set of ordered pairs that pair up the arguments and values of the function; in other words, the function's graph. The extension of an object in abstract algebra, such as a group, is the underlying set of the object. The extension of a set is the set itself. That a set can capture the notion of the extension of anything is the idea behind the axiom of extensionality in axiomatic set theory.

Full article ▸

related documents
Multi-valued logic
Actual infinity
Mathematician
Counterexample
Principle of bivalence
Frequency probability
Modus tollens
Knowledge representation
Pattern recognition
Conjecture
Gödel's ontological proof
Heuristic
Identity (philosophy)
Ontological commitment
Hermann Grassmann
Structure
Pattern
Norbert Wiener
Bounded rationality
Raymond Smullyan
Thomas Bayes
Nothing
Boosting
Hilbert's fifth problem
Unification
EXPTIME
Dirichlet's theorem on arithmetic progressions
Most significant bit
Exponential time
Linear span