Extractive metallurgy

related topics
{acid, form, water}
{area, part, region}
{system, computer, user}

Extractive metallurgy is the study of the processes used in the separation and concentration (benefaction) of raw materials. The field is an applied science, covering all aspects of the physical and chemical processes used to produce mineral-containing and metallic materials, sometimes for direct use as a finished product, but more often in a form that requires further physical processing which is generally the subject of physical metallurgy, ceramics, and other disciplines within the broad field of materials science.

The field of extractive metallurgy encompasses many specialty sub-disciplines, each concerned with various physical and chemical processes that are steps in an overall process of producing a particular material. These specialties are generically grouped into the categories of mineral processing, hydrometallurgy, pyrometallurgy, and electrometallurgy. The distinctions among these groups of sub-disciplines within extractive metallurgy is far from clear, and many commercially important metallurgical processes involve considerable overlap.

The theoretical basis of extractive metallurgy is underpinned by the more general sciences of physics, chemistry, and geology. Additionally, the practice of extractive metallurgy nearly always involves contributions from other scientific fields such as analytical chemistry and mineralogy.

Contents

Mineral processing

Mineral processing involves the processes used to manipulate the particle size of solid raw materials and to separate valuable materials from materials of no value, referred to as gangue. Usually, particle size reduction, also referred to as comminution, is required to permit efficient separation of the valuable materials from gangue. Separation processes take advantage of physical properties of the materials in order to separate them from each other. These physical properties can include density, particle size and shape, electrical and magnetic properties, and surface properties. Since many size reduction and separation processes involve the use of water, solid-liquid separation processes are also a subject of mineral processing.

Hydrometallurgy

Hydrometallurgy is concerned with processes involving aqueous solutions to extract metals from ores. The most common hydrometallurgical process is leaching, which involves dissolution of the valuable metals into the aqueous solution. After the solution is separated from the ore solids, the solution is often subjected to various processes of purification and concentration before the valuable metal is recovered either in its metallic state or as a chemical compound. The solution purification and concentration processes may include precipitation, distillation, adsorption, and solvent extraction. The final recovery step may involve precipitation, cementation, or an electrometallurgical process. Sometimes, hydrometallurgical processes may be carried out directly on the ore material without any pretreatment steps. More often, the ore must be pretreated by various mineral processing steps, and sometimes by pyrometallurgical proceses.

Full article ▸

related documents
Cellulose
Americium
Isoprene
Ribosome
Pyridine
Picric acid
Deoxyribose
Primer (molecular biology)
Eutectic point
Filtration
Hydrogen cyanide
Nucleotide
Coke (fuel)
Radionuclide
Tartaric acid
Oxidation state
Fluorite
Kaolinite
Proline
Toluene
Coenzyme Q - cytochrome c reductase
Ethylene glycol
Californium
Ununtrium
Protease
Cytochrome c oxidase
Gallium
Guanine
NADH dehydrogenase
Green fluorescent protein