Field-effect transistor

related topics
{system, computer, user}
{acid, form, water}
{math, energy, light}
{line, north, south}
{area, part, region}
{style, bgcolor, rowspan}

The field-effect transistor (FET) relies on an electric field to control the shape and hence the conductivity of a channel of one type of charge carrier in a semiconductor material. FETs are sometimes called unipolar transistors to contrast their single-carrier-type operation with the dual-carrier-type operation of bipolar (junction) transistors (BJT). The concept of the FET predates the BJT, though it was not physically implemented until after BJTs due to the limitations of semiconductor materials and the relative ease of manufacturing BJTs compared to FETs at the time.



The principle of field-effect transistors was first patented by Julius Edgar Lilienfeld in 1925 and by Oskar Heil in 1934, but practical semi-conducting devices (the JFET, junction gate field-effect transistor) were only developed much later after the transistor effect was observed and explained by the team of William Shockley at Bell Labs in 1947. The MOSFET (metal–oxide–semiconductor field-effect transistor), which largely superseded the JFET and had a more profound effect on electronic development, was first proposed by Dawon Kahng in 1960.[1]


All FETs have a gate, drain, and source terminal that correspond roughly to the base, collector, and emitter of BJTs. Aside from the JFET, all FETs also have a fourth terminal called the body, base, bulk, or substrate. This fourth terminal serves to bias the transistor into operation; it is rare to make non-trivial use of the body terminal in circuit designs, but its presence is important when setting up the physical layout of an integrated circuit. The size of the gate, length L in the diagram, is the distance between source and drain. The width is the extension of the transistor, in the diagram perpendicular to the cross section. Typically the width is much larger than the length of the gate. A gate length of 1 µm limits the upper frequency to about 5 GHz, 0.2 µm to about 30 GHz.

The names of the terminals refer to their functions. The gate terminal may be thought of as controlling the opening and closing of a physical gate. This gate permits electrons to flow through or blocks their passage by creating or eliminating a channel between the source and drain. Electrons flow from the source terminal towards the drain terminal if influenced by an applied voltage. The body simply refers to the bulk of the semiconductor in which the gate, source and drain lie. Usually the body terminal is connected to the highest or lowest voltage within the circuit, depending on type. The body terminal and the source terminal are sometimes connected together since the source is also sometimes connected to the highest or lowest voltage within the circuit, however there are several uses of FETs which do not have such a configuration, such as transmission gates and cascode circuits.

Full article ▸

related documents
Balanced line
Zener diode
PIN diode
Linear timecode
Maximum transmission unit
Xerox Network Services
Lossy compression
Intel 4004
Digital Private Network Signalling System
Ku band
Local area network
Windows 98
Context switch
VESA BIOS Extensions
Émile Baudot
Pulse dialing
User interface
Communications system
Virtual circuit
Sampling rate
Forward error correction
Adobe Photoshop
MX record