# Golden ratio base

 related topics {math, number, function} {language, word, form} {rate, high, increase}

Golden ratio base is a non-integer positional numeral system that uses the golden ratio (the irrational number (1+√5)/2 ≈ 1.61803399... symbolized by the Greek letter φ) as its base. It is sometimes referred to as base-φ, golden mean base, phi-base, or, colloquially, phinary. Any non-negative real number can be represented as a base-φ numeral using only the digits 0 and 1, and avoiding the digit sequence "11" - this is called a standard form. A base-φ numeral that includes the digit sequence "11" can always be rewritten in standard form, using the algebraic properties of the base φ — most notably that φ+1 = φ2. For instance, 11φ = 100φ.

Despite using an irrational number base, all non-negative integers have a unique representation as a terminating (finite) base-φ expansion, but only if in the standard form. Other numbers have standard representations in base-φ, with rational numbers having recurring representations. These representations are unique, except that numbers with a terminating expansion also have a non-terminating expansion, as they do in base-10; for example, 1=0.99999….

## Contents

### Writing golden ratio base numbers in standard form

211.01φ is not a standard base-φ numeral, since it contains a "11" and a "2", which isn't a "0" or "1", and contains a 1=-1, which isn't a "0" or "1" either.

To "standardize" a numeral, we can use the following substitutions: 011φ = 100φ, 0200φ = 1001φ and 010φ = 101φ. We can apply the substitutions in any order we like, as the result is the same. Below, the substitutions used are on the right, the resulting number on the left.