Hemerythrin

related topics
{acid, form, water}
{disease, patient, cell}
{area, community, home}
{group, member, jewish}
{line, north, south}
{style, bgcolor, rowspan}

Hemerythrin (also spelled haemerythrin; from Greek words αίμα = blood and ερυθρός = red) is an oligomeric protein responsible for oxygen (O2) transport in the marine invertebrate phyla of sipunculids, priapulids, brachiopods, and in a single annelid worm, magelona. Recently, hemerythrin was discovered in methanotrophic bacterium Methylococcus capsulatus. Myohemerythrin is a monomeric O2-binding protein found in the muscles of marine invertebrates. Hemerythrin and myohemerythrin are essentially colorless when deoxygenated, but turn a violet-pink in the oxygenated state.

Hemerythrin does not, as the name might suggest, contain a heme. The names of the blood oxygen transporters hemoglobin, hemocyanin, hemerythrin and vanabins, do not refer to the heme group (only found in globins), instead these names are derived from the Greek word for blood.

Contents

O2 binding mechanism

The mechanism of dioxygen binding is unusual. Most O2 carriers operate via formation of Dioxygen complexes, but hemerythrin holds the O2 as a hydroperoxide. The site that binds O2 consists of a pair of iron centres. The iron atoms are bound to the protein through the carboxylate side chains of a glutamate and aspartates as well as through five histidine residues. Hemerythrin and myohemerythrin are often described according to oxidation and ligation states of the iron centre:

The uptake of O2 by hemerythrin is accompanied by two-electron oxidation of the diferrous centre to produce a hydroperoxide (OOH-) complex. The binding of O2 binding is roughly described in scheme:

Deoxyhemerythrin contains two high-spin ferrous ions bridged by hydroxyl group (A). One iron is hexacoordinate and another is pentacoordinate. A hydroxyl group serves as a bridging ligand but also functions as a proton donor to the O2 substrate. This proton-transfer result in the formation of a single oxygen atom (μ-oxo) bridge in oxy- and methemerythrin. O2 binds to the pentacoordinate Fe2+ centre at the vacant coordination site (B). Then electrons are transferred from the ferrous ions to generate the binuclear ferric (Fe3+,Fe3+) centre with bound peroxide (C).[1][2]

Quaternary structure and cooperativity

Full article ▸

related documents
Peroxidase
Plasma ashing
Supersaturation
Protein synthesis
Cytoplasm
Syenite
Hexane
Phenol
Lysine
Metallocene
Endocytosis
Hydroxide
Alkyne
Salt (chemistry)
Conjugate acid
Critical temperature
Alkali
Lignite
Apatite
Restriction enzyme
Phenols
Adenine
Isocyanate
Histidine
Acetal
Selenocysteine
Pyrimidine
Chloride
Amyl nitrite
Einsteinium