Intensity (physics)

related topics
{math, energy, light}
{language, word, form}
{water, park, boat}

In physics, intensity is a measure of the energy flux, averaged over the period of the wave. The word "intensity" here is not synonymous with "strength", "amplitude", or "level", as it sometimes is in colloquial speech. For example, "the intensity of pressure" is meaningless, since the parameters of those variables do not match.

To find the intensity, take the energy density (that is, the energy per unit volume) and multiply it by the velocity at which the energy is moving. The resulting vector has the units of power divided by area (i.e. W/m²). It is possible to define the intensity of the water coming from a garden sprinkler, but intensity is used most frequently with waves (i.e. sound or light).

Contents

Mathematical description

If a point source is radiating energy in three dimensions and there is no energy lost to the medium, then the intensity decreases in proportion to distance from the object squared. This is due to physics and geometry. Physically, conservation of energy applies. The consequence of this is that the net power coming from the source must be constant, thus:

where P is the net power radiated, I is the intensity as a function of position, and dA is a differential element of a closed surface that contains the source. That P is a constant. If we integrate over a surface of uniform intensity I, for instance over a sphere centered around a point source radiating equally in all directions, the equation becomes:

where I is the intensity at the surface of the sphere, and r is the radius of the sphere. (Asurf = 4πr2 is the expression for the surface area of a sphere). Solving for I, we get:

If the medium is damped, then the intensity drops off more quickly than the above equation suggests.

Anything that can carry energy can have an intensity associated with it. For an electromagnetic wave, if E is the complex amplitude of the electric field, then the time-averaged energy density of the wave is given by

and the intensity is obtained multiplying this expression by the velocity of the wave, c / n:

where n is the refractive index, c is the speed of light in vacuum and ε0 is the vacuum permittivity.

The treatment above does not hold for electromagnetic fields that are not radiating, such as for an evanescent wave. In these cases, the intensity can be defined as the magnitude of the Poynting vector.[1]

Full article ▸

related documents
Adrastea (moon)
Celestial coordinate system
Azimuth
Dioptre
Right ascension
Theory of relativity
Ampere
Analemma
Planetary ring
Principle of relativity
Hoag's Object
Quantum Hall effect
Apsis
Antihydrogen
Polaris
Wave impedance
Radiation pressure
Nemesis (star)
Plum pudding model
Electro-optic modulator
Optical depth
Plane wave
Conservative force
Giant impact hypothesis
Murray Gell-Mann
Mirror image
Cycloid
Interstellar cloud
Rhea (moon)
Gyrocompass