Large-scale structure of the cosmos

related topics
{math, energy, light}
{@card@, make, design}
{group, member, jewish}
{system, computer, user}

In Big Bang cosmology, the observable universe consists of the galaxies and other matter that we can in principle observe from Earth in the present day, because light (or other signals) from those objects has had time to reach us since the beginning of the cosmological expansion. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in every direction—that is, the observable universe is a spherical volume (a ball) centered on the observer, regardless of the shape of the universe as a whole. The actual shape of the universe may or may not be spherical. However, the portion of it that we (humans, from the perspective of planet Earth) are able to observe is determined by whether or not the light and other signals originating from distant objects has had time to arrive at our point of observation (planet Earth). Therefore, the observable universe appears from our perspective to be spherical. Every location in the universe has its own observable universe which may or may not overlap with the one centered around the Earth.

The word observable used in this sense does not depend on whether modern technology actually permits detection of radiation from an object in this region (or indeed on whether there is any radiation to detect). It simply indicates that it is possible in principle for light or other signals from the object to reach an observer on Earth. In practice, we can only see light from as far back as the time of photon decoupling in the recombination epoch, which is when particles were first able to emit photons that were not quickly re-absorbed by other particles, before which the Universe was filled with a plasma opaque to photons. The collection of points in space at just the right distance so that photons emitted at the time of photon decoupling would be reaching us today form the surface of last scattering, and the photons emitted at the surface of last scattering are the ones we detect today as the cosmic microwave background radiation (CMBR). However, it may be possible in the future to observe the still older neutrino background, or even more distant events via gravitational waves (which also move at the speed of light). Sometimes a distinction is made between the visible universe, which includes only signals emitted since recombination, and the observable universe, which includes signals since the beginning of the cosmological expansion (the Big Bang in traditional cosmology, the end of the inflationary epoch in modern cosmology). The current comoving distance to the particles which emitted the CMBR, representing the radius of the visible universe, is calculated to be about 14.0 billion parsecs (about 45.7 billion light years), while the current comoving distance to the edge of the observable universe is calculated to be 14.3 billion parsecs (about 46.6 billion light years),[1] about 2% larger.

The age of the universe is about 13.75 billion years, but due to the expansion of space we are now observing objects that are now considerably farther away (as defined in terms of cosmological proper distance, which is equal to the comoving distance at the present time) than a static 13.75 billion light-years distance.[2] The diameter of the observable universe is estimated to be about 28 billion parsecs (93 billion light-years),[3] putting the edge of the observable universe at about 46–47 billion light-years away.[4][5]

Full article ▸

related documents
Group velocity
Circular polarization
Propagation constant
Electromagnetic spectrum
Hydrostatic equilibrium
Molecular cloud
Betelgeuse
Beam diameter
Hubble sequence
Foucault pendulum
Deferent and epicycle
Supernova remnant
Surface wave
Absolute zero
Standing wave
LIGO
Solar flare
Explorer program
Horizon
Voyager 1
Microwave
Geosynchronous orbit
Callisto (moon)
Volume
Simple harmonic motion
Mechanical work
Shot noise
Mirage
Fourier transform spectroscopy
Titius–Bode law