In electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. See polarization for more information.
Historically, the orientation of a polarized electromagnetic wave has been defined in the optical regime by the orientation of the electric vector, and in the radio regime, by the orientation of the magnetic vector.
Mathematical description of linear polarization
The classical sinusoidal plane wave solution of the electromagnetic wave equation for the electric and magnetic fields is (cgs units)
for the magnetic field, where k is the wavenumber,
is the angular frequency of the wave, and c is the speed of light.
Here
is the amplitude of the field and
is the Jones vector in the xy plane.
The wave is linearly polarized when the phase angles are equal,
This represents a wave polarized at an angle θ with respect to the x axis. In that case the Jones vector can be written
The state vectors for linear polarization in x or y are special cases of this state vector.
If unit vectors are defined such that
and
then the polarization state can written in the "xy basis" as
References
 Jackson, John D. (1998). Classical Electrodynamics (3rd ed.). Wiley. ISBN 047130932X.
See also
This article incorporates public domain material from the General Services Administration document "Federal Standard 1037C".
Full article ▸
