Liouville function

related topics
{math, number, function}

The Liouville function, denoted by λ(n) and named after Joseph Liouville, is an important function in number theory.

If n is a positive integer, then λ(n) is defined as:

where Ω(n) is the number of prime factors of n, counted with multiplicity (sequence A008836 in OEIS).

λ is completely multiplicative since Ω(n) is additive. We have Ω(1) = 0 and therefore λ(1) = 1. The Liouville function satisfies the identity:


The Dirichlet series for the Liouville function gives the Riemann zeta function as

The Lambert series for the Liouville function is

where \vartheta_3(q) is the Jacobi theta function.


The Pólya conjecture is a conjecture made by George Pólya in 1919, stating that:

for n > 1. This turned out to be false. The smallest counter-example is n = 906150257, found by Minoru Tanaka in 1980. It has since been shown that L(n) > 0.0618672√n for infinitely many positive integers n[1], while it can also be shown that L(n) < -1.3892783√n for infinitely many positive integers n.

Define the related sum

It was open for some time whether T(n) ≥ 0 for sufficiently big nn0 (this "conjecture" is occasionally (but incorrectly) attributed to Pál Turán). This was then disproved by Haselgrove in 1958 (see the reference below), who showed that T(n) takes negative values infinitely often. A confirmation of this positivity conjecture would have led to a proof of the Riemann hypothesis, as was shown by Pál Turán.


Full article ▸

related documents
Euler's sum of powers conjecture
Tomaž Pisanski
Centralizer and normalizer
Cypherpunk anonymous remailer
Face (geometry)
Canonical Encoding Rules
Wilhelm Ackermann
Vladimir Voevodsky
FIPS county code
Gauss–Markov process
List of basic mathematics topics
Code word
Mrs. Miniver's problem
Mathematical constants (sorted by continued fraction representation)
Super-Poulet number
Simple module
Inductive logic programming
Classical logic
Spaced repetition
Type 1 encryption
Reed's law
Niccolò Fontana Tartaglia
Pedal triangle