Microelectromechanical systems

related topics
{acid, form, water}
{@card@, make, design}
{system, computer, user}
{math, energy, light}
{company, market, business}
{ship, engine, design}
{mi², represent, 1st}
{school, student, university}

Microelectromechanical systems (MEMS) (also written as micro-electro-mechanical, MicroElectroMechanical or microelectronic and microelectromechanical systems) is the technology of very small mechanical devices driven by electricity; it merges at the nano-scale into nanoelectromechanical systems (NEMS) and nanotechnology. MEMS are also referred to as micromachines (in Japan), or Micro Systems Technology - MST (in Europe).

MEMS are separate and distinct from the hypothetical vision of molecular nanotechnology or molecular electronics. MEMS are made up of components between 1 to 100 micrometres in size (i.e. 0.001 to 0.1 mm) and MEMS devices generally range in size from 20 micrometres (20 millionths of a metre) to a millimetre. They usually consist of a central unit that processes data, the microprocessor and several components that interact with the outside such as microsensors[1]. At these size scales, the standard constructs of classical physics are not always useful. Because of the large surface area to volume ratio of MEMS, surface effects such as electrostatics and wetting dominate volume effects such as inertia or thermal mass.

The potential of very small machines was appreciated before the technology existed that could make them—see, for example, Richard Feynman's famous 1959 lecture There's Plenty of Room at the Bottom. MEMS became practical once they could be fabricated using modified semiconductor device fabrication technologies, normally used to make electronics. These include molding and plating, wet etching (KOH, TMAH) and dry etching (RIE and DRIE), electro discharge machining (EDM), and other technologies capable of manufacturing small devices. An early example of a MEMS device is the resonistor – an electromechanical monolithic resonator.[2][3]

Contents

related documents
Vulcanization
Smelting
Ceramic
Wrought iron
Mica
Nylon
Phosphor
Ultramarine
Polyethylene glycol
Lamp (electrical component)
Isopropyl alcohol
Nucleosome
Histone
Sulfate
Polymerization
Functional group
Lanthanum
Ununoctium
Organometallic chemistry
Thiol
Lanthanoid
Lutetium
Neptunium
Nucleophile
Olivine
Aqua regia
Zirconium
Cubic zirconia
Catalase
Sintering