A numeral system (or system of numeration) is a writing system for expressing numbers, that is a mathematical notation for representing numbers of a given set, using graphemes or symbols in a consistent manner. It can be seen as the context that allows the symbols "11" to be interpreted as the binary symbol for three, the decimal symbol for eleven, or a symbol for other numbers in different bases.
Ideally, a numeral system will:
 Represent a useful set of numbers (e.g. all integers, or rational numbers)
 Give every number represented a unique representation (or at least a standard representation)
 Reflect the algebraic and arithmetic structure of the numbers.
For example, the usual decimal representation of whole numbers gives every whole number a unique representation as a finite sequence of digits. However, when decimal representation is used for the rational or real numbers, such numbers in general have an infinite number of representations, for example 2.31 can also be written as 2.310, 2.3100000, 2.309999999... etc, all of which have the same meaning except for some scientific and other contexts where greater precision is implied by a larger number of figures shown.
Numeral systems are sometimes called number systems, but that name is ambiguous, as it could refer to different systems of numbers, such as the system of real numbers, the system of complex numbers, the system of padic numbers, etc. Such systems are not the topic of this article.
Contents
Types of numeral systems
The most commonly used system of numerals is known as Hindu numerals or HinduArabic numerals. Two Indian mathematicians are credited with developing them. Aryabhata of Kusumapura developed the placevalue notation in the 5th century and a century later Brahmagupta introduced the symbol for zero.^{[1]}
The simplest numeral system is the unary numeral system, in which every natural number is represented by a corresponding number of symbols. If the symbol / is chosen, for example, then the number seven would be represented by ///////. Tally marks represent one such system still in common use. The unary system is only useful for small numbers, although it plays an important role in theoretical computer science. Elias gamma coding, which is commonly used in data compression, expresses arbitrarysized numbers by using unary to indicate the length of a binary numeral.
Full article ▸
