Personal Area Network

related topics
{system, computer, user}
{car, race, vehicle}
{theory, work, human}
{ship, engine, design}
{water, park, boat}
{law, state, case}
{group, member, jewish}

A Bluetooth PAN is also called a piconet, and is composed of up to 8 active devices in a master-slave relationship (a very large number of devices can be connected in "parked" mode). The first Bluetooth device in the piconet is the master, and all other devices are slaves that communicate with the master. A piconet typically has a range of 10 meters, although ranges of up to 100 meters can be reached under ideal circumstances.

Recent innovations in Bluetooth antennas have allowed these devices to greatly exceed the range for which they were originally designed. At DEF CON 12, a group of hackers known as "Flexilis" successfully connected two Bluetooth devices more than half a mile (800 m) away. They used an antenna with a scope and Yagi antenna, all attached to a rifle stock. A cable attached the antenna to a Bluetooth card in a computer. They later named the antenna "The BlueSniper."[citation needed]

Skinplex, another PAN technology, transmits via the capacitive near field of human skin. Skinplex can detect and communicate up to one meter from a human body. It is already used for access control for door locks and jamming protection in convertible car roofs.

Wireless PAN

A WPAN (wireless personal area network) is a personal area network - a network for interconnecting devices centered around an individual person's workspace - in which the connections are wireless. Typically, a wireless personal area network uses some technology that permits communication within about 10 meters - in other words, a very short range. One such technology is Bluetooth, which was used as the basis for a new standard, IEEE 802.15.

A WPAN could serve to interconnect all the ordinary computing and communicating devices that many people have on their desk or carry with them today - or it could serve a more specialized purpose such as allowing the surgeon and other team members to communicate during an operation.

A key concept in WPAN technology is known as "plugging in". In the ideal scenario, when any two WPAN-equipped devices come into close proximity (within several meters of each other) or within a few kilometers of a central server, they can communicate as if connected by a cable. Another important feature is the ability of each device to lock out other devices selectively, preventing needless interference or unauthorized access to information.

The technology for WPANs is in its infancy and is undergoing rapid development. Proposed operating frequencies are around 2.4 GHz in digital modes. The objective is to facilitate seamless operation among home or business devices and systems. Every device in a WPAN will be able to plug in to any other device in the same WPAN, provided they are within physical range of one another. In addition, WPANs worldwide will be interconnected. Thus, for example, an archeologist on site in Greece might use a PDA to directly access databases at the University of Minnesota in Minneapolis, and to transmit findings to that database.

See also

References

Full article ▸

related documents
IBM 8514
HIPPI
AMOS (programming language)
Carrier sense multiple access with collision detection
Television receive-only
Transceiver
Evolution (software)
Nascom
MOS Technology 6510
IP over Avian Carriers
Primary rate interface
Intel 80486DX2
BINAC
Z/OS
Terminal adapter
GEGL
ICab
Double-sideband suppressed-carrier transmission
Intel 80186
IBM System p
Reduced-carrier transmission
32-bit application
C band
Exabyte
Pine (e-mail client)
Microphone array
Vertical interval timecode
Mouse gesture
Fiber distributed data interface
Edlin