Planetary ring

related topics
{math, energy, light}
{god, call, give}
{island, water, area}
{day, year, event}

A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in a flat disc-shaped region. The most spectacular planetary rings known are those around Saturn, but the other three gas giants of the solar system (Jupiter, Uranus and Neptune) possess ring systems of their own.

Reports in March 2008[1][2][3] have suggested that the Saturnian moon Rhea may have its own tenuous ring system, which would make it the only moon known to possess a ring system. A later study published in 2010 revealed that imaging of Rhea from the Cassini mission was inconsistent with the predicted properties of the rings, suggesting that some other mechanism is responsible for the magnetic effects that had led to the ring hypothesis.[4]

Contents

Overview

There are three ways that planetary rings (the rings around planets) have been proposed to have formed: from material of the protoplanetary disk that was within the Roche limit of the planet and thus could not coalesce to form moons; from the debris of a moon that was disrupted by a large impact; or from the debris of a moon that was disrupted by tidal stresses when it passed within the planet's Roche limit. Most rings were thought to be unstable and to dissipate over the course of tens or hundreds of millions of years, but it now appears that Saturn's rings might be quite old, dating to the early days of the Solar system.[5]

The composition of ring particles varies; they may be silicate or icy dust. Larger rocks and boulders may also be present, and in 2007 tidal effects from eight 'moonlets' only a few hundred meters across were detected within Saturn's rings.

Sometimes rings will have "shepherd" moons, small moons that orbit near the outer edges of rings or within gaps in the rings. The gravity of shepherd moons serves to maintain a sharply defined edge to the ring; material that drifts closer to the shepherd moon's orbit is either deflected back into the body of the ring, ejected from the system, or accreted onto the moon itself.

Several of Jupiter's small innermost moons, namely Metis and Adrastea, are within Jupiter's ring system and are also within Jupiter's Roche limit.[6] It is possible that these rings are composed of material that is being pulled off of these two bodies by Jupiter's tidal forces, possibly facilitated by impacts of ring material on their surfaces.

Full article ▸

related documents
Right ascension
Wave impedance
Celestial coordinate system
Theory of relativity
Plum pudding model
Antihydrogen
Analemma
Adrastea (moon)
Principle of relativity
Conservative force
Intensity (physics)
Mirror image
Dioptre
Azimuth
Giant impact hypothesis
Cycloid
Interstellar cloud
Nemesis (star)
Apsis
Quantum Hall effect
Gyrocompass
Electro-optic modulator
Rhea (moon)
Ampere
South Atlantic Anomaly
Hoag's Object
Deimos (moon)
Murray Gell-Mann
Local Group
Polaris