Quasar

related topics
{math, energy, light}
{day, year, event}
{black, white, people}
{rate, high, increase}

A quasi-stellar radio source ("quasar") is a very energetic and distant active galactic nucleus. They are the most luminous objects in the universe. Quasars were first identified as being high redshift sources of electromagnetic energy, including radio waves and visible light, that were point-like, similar to stars, rather than extended sources similar to galaxies.

While there was initially some controversy over the nature of these objects—as recently as the early 1980s, there was no clear consensus as to their nature—there is now a scientific consensus that a quasar is a compact region in the center of a massive galaxy surrounding its central supermassive black hole. Its size is 10–10,000 times the Schwarzschild radius of the black hole. The quasar is powered by an accretion disc around the black hole.

Contents

Overview

Quasars show a very high redshift, which is an effect of the expansion of the universe between the quasar and the Earth.[1] They are the most luminous, powerful, and energetic objects known in the universe. They tend to inhabit the very centers of active young galaxies and can emit up to a thousand times the energy output of the Milky Way. When combined with Hubble's law, the implication of the redshift is that the quasars are very distant—and thus, it follows, objects from much earlier in the universe's history. The most luminous quasars radiate at a rate that can exceed the output of average galaxies, equivalent to one trillion (1012) suns. This radiation is emitted across the spectrum, almost equally, from X-rays to the far-infrared with a peak in the ultraviolet-optical bands, with some quasars also being strong sources of radio emission and of gamma-rays. In early optical images, quasars looked like single points of light (i.e. point sources), indistinguishable from stars, except for their peculiar spectra. With infrared telescopes and the Hubble Space Telescope, the "host galaxies" surrounding the quasars have been identified in some cases.[2] These galaxies are normally too dim to be seen against the glare of the quasar, except with these special techniques. Most quasars cannot be seen with small telescopes, but 3C 273, with an average apparent magnitude of 12.9, is an exception. At a distance of 2.44 billion light-years, it is one of the most distant objects directly observable with amateur equipment.

Full article ▸

related documents
Aberration of light
Potential energy
Pluto
Asteroid belt
Centripetal force
Magnetosphere
Extrasolar planet
Universe
Kuiper belt
Saturn
Ionosphere
Speed of sound
Alpha Centauri
White dwarf
Diffraction
Electricity
Langmuir probe
Photoelectric effect
Navier–Stokes equations
Spacetime
Bernoulli's principle
Light pollution
Vacuum
Cosmic ray
Binary star
History of astronomy
Intermolecular force
Gravitational lens
Magnet
Venus